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Motivation: Weak IV in Empirical Practice

Figure: American Economic Review 2018-2022 heterscadesticity
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Motivation: Availability of Large Datasets

Big datasets are becoming increasingly available nowadays,

I high data volume, 15.5 ZB in 2015, 97 ZB in 2022 (representing a
525% increase); (1 ZB = 1012 GB)

I high-dimensional controls, allowing for more flexible functional
forms, e.g., polynomial terms and interaction effects.
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Abstract

New inference procedure for local average treatment effect (LATE)
when

I identification may be weak (e.g. few compliers),
I model incorporate high-dimensional covariates (e.g. many controls).

The proposed test statistic has uniformly correct asymptotic size,
I inversion of the proposed test statistic for inference on LATE.

Revisit 2 empirical studies:
I Hornung (2015, JEEA) and Ambrus et al. (2020, AER),
↪→ in both cases, the proposed method is more efficient, yielding

narrower confidence regions -whereas competitors often report
larger confidence intervals.
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LATE

LATE: The effect of a treatment on compliers who adhere to the
treatment assigned to their sample group.

Assume we have N observations

I Yi : outcome of interest for unit i.

I Di ∈ {0, 1} : receipt of treatment.

I Zi ∈ {0, 1} : offer of treatment.

Imbens and Angrist (1994) propose

LATE =
EP [Y |Z = 1]− EP [Y |Z = 0]

EP [D|Z = 1]− EP [D|Z = 0]
=
ITT

FS
.

Incorporate covariates into LATE estimation, e.g. Abadie (2003)
I Xi : p-dimensional covariates.

Weak identification in LATE: FS → 0.
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I Yi : outcome of interest for unit i.

I Di ∈ {0, 1} : receipt of treatment.

I Zi ∈ {0, 1} : offer of treatment.

Imbens and Angrist (1994) propose

θ := LATE =
EP [Y |Z = 1]− EP [Y |Z = 0]
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=
ITT

FS
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δ
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Weak identification

Issue: When instruments Z are weakly correlated with endogenous regressors
D, conventional methods for IV estimation and inference become unreliable.

θ =
δ

π
,

when π̂ is close to zero, θ̂ is highly nonlinear in π̂

Trick: Fieller-type transformation & test inversion.
Given H0 : θ = θ0, we have δ − θ0π = 0. The Anderson-Rubin (AR) test,

AR(θ) = (δ − θπ)′Ω(θ)−1(δ − θπ),

follows a χ2 distribution under H0.
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Relations to the Literature: Weak Identification

Inference procedures depend on the observed process only through its value,
and potentially derivative, at the point θ0: Anderson–Rubin statistic, Stock
and Wright (2000), Kleibergen (2005).

Methods depend on the full path of the observed process: Moreira (2003) and
Andrews and Mikusheva (2016).
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Relations to the Literature: Weak Identification

Inference procedures depend on the observed process only through its value,
and potentially derivative, at the point θ0: Anderson–Rubin statistic, Stock
and Wright (2000), Kleibergen (2005).

Methods depend on the full path of the observed process: Moreira (2003) and
Andrews and Mikusheva (2016).

↪→Limitation: None of them considers high-dimensional model (model with many
covariates).
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Relations to the Literature: ML Methods

In high-dimensional models, ML methods are commonly employed for
model selection:

Chernozhukov et al. (2018) introduce the double/debiased machine learning
(DML) method, a combination of the Neyman orthogonality condition and
cross-fitting method.

Belloni et al. (2017) present an efficient estimator and confidence bands for the
LATE with nonparametric/high-dimensional components.
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Comparison of the Literature

Weak Identification lit

identification-robust
test statistics

use traditional methods
to handle Xi

Drawbacks

◦ overfitting

◦ multicollinearity

Machine Learning lit

normal z-test

use ML to handle Xi

◦ cannot perform well under
weakly identified scenarios

↪→ My proposed method takes advantage from both literature:

identification-robust test statistics

use ML to handle the high-dimensional Xi
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Contributions

Technical Contribution: Instead of proposing a consistent estimator for θ, I present
an empirical process along with its uniformly consistent estimator,

↪→ the proposed test statistic is shown to be uniformly size-correct.
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Setup

Model the random vector W = (Y,D,Z,X′)′ as follows,

First stage D = m0(Z,X) + v, EP [v|Z,X] = 0

Reduced form Y = g0(Z,X) + u, EP [u|Z,X] = 0

Propensity score Z = p0(X) + e, EP [e|X] = 0

m0, g0, p0: no need to impose any parametric assumptions by
Blandhol et al. (2022).

The LATE framework proposed by Tan (2006) is given by

θ =
EP [g(1,X)−g(0,X)+ Z

p(X)
(Y−g(1,X))− 1−Z

1−p(X)
(Y−g(0,X))]

EP [m(1,X)−m(0,X)+ Z
p(X)

(D−m(1,X))− 1−Z
1−p(X)

(D−m(0,X))]
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p(X)

(D−m(1,X))− 1−Z
1−p(X)

(D−m(0,X))]
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Z
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Z

p(X)
(D −m(1, X))−

1− Z
1− p(X)

(D −m(0, X))
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Score Function

Consider a function

ψ(W ; θ, g,m, p) =

a︷ ︸︸ ︷
g(1, X)− g(0, X) +

Z(Y − g(1, X))

p(X)
−

(1− Z)(Y − g(0, X))

1− p(X)

− θ ×
(
m(1, X)−m(0, X) +

Z(D −m(1, X))

p(X)
−

(1− Z)(D −m(0, X))

1− p(X)︸ ︷︷ ︸
b

)
,

with

I target parameter θ ∈ Θ ⊂ R is the LATE.

I nuisance parameter η = (g,m, p) ∈ T for a convex1 set T .

I ψ is a score function.

Two-stage procedure:
Stage 1 estimating nuisance parameter η,
Stage 2 making inference for the target parameter θ.

1To ensure that ψ(W ; θ0, η0 + r(η − η0)) is well defined for all r ∈ [0, 1).
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Nuisance Parameters

Specify the nuisance parameters η = (g,m, p) as follows,

g(Z,X) = EP [Y |Z,X] = Zβ21 +X′β22 Reduced form

m(Z,X) = EP [D|Z,X] = Λ(Zβ11 +X′β12) First stage

p(X) = EP [Z|X] = Λ(X′γ) Propensity score

I The logistic CDF Λ(t) = exp(t)
1+exp(t)

for all t ∈ R

I In this example, the nuisance parameters
η = (β11, β12, β21, β22, γ).
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Properties of the Score ψ

Moment condition:

EP [ψ(Wi; θ0, η0)︸ ︷︷ ︸
a−θ0×b

] = 0.

Neyman orthogonality condition:

I Path-wise (or Gateaux) derivative map Dr

Dr[η − η0] := ∂r{EP [ψ(W ; θ0, η0 + r(η − η0))]} for η ∈ T.

I The Neyman orthogonality condition holds at (θ0, η0) if

D0[η − η0] = ∂ηEPψ(W ; θ0, η0)[η − η0] = 0

holds for all η ∈ TN for a nuisance realization set TN ⊂ T .

↪→ The score function ψ is an AR-type Neyman orthogonal score.
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Algorithm Breakdown

◦ estimate nuisance parameter η
Step 1-2: data splitting/ cross-validation

◦ make an inference for the target parameter θ based on η̂
Step 3-6: inversion of the condition QLR test statistics
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Estimate Nuisance Parameter η

Step 1: Randomly split the sample {1, · · · , N} into K folds {I1, · · · , IK}.

Step 2: For each k ∈ {1, · · · ,K}, obtain η̂k by ML methods using only the
subsample of those observations with indices i ∈ {1, · · · , N} \ Ik:

An illustration of K=2-fold cross-fitting.

I1 I2 Nuisance I1 Nuisance I2

η̂1 η̂2
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Estimate Nuisance Parameter, Step 2

(2.1) (β̂21,k, β̂22,k) in reduce form: run ML (e.g., lasso) OLS regression to estimate,

(β̂21,k, β̂22,k) ∈ arg min
β21,β22

EIc
k
[(Yi − Ziβ21 −X′iβ22)2] +

λ3

|Ick|
‖(β21, β22)‖1,

(2.2) (β̂11,k, β̂12,k) in first stage: run ML (e.g., lasso) logistic regression to estimate,

(β̂11,k, β̂12,k) ∈ arg min
β11,β12

{
EIc

k
[L1(Wi;β11, β12)] +

λ1

|Ick|
‖(β11, β12)‖1

}
,

(2.3) γ̂k in the propensity score: run ML (e.g., lasso) logistic regression to estimate,

γ̂k ∈ arg min
γ

{
EIc

k
[L2(Wi; γ)] +

λ2

|Ick|
‖γ‖1

}
,

I λ1, λ2, λ3 : penalty parameter

I L1(Wi;β11, β12) = Di(Ziβ11 +X′iβ12)− log(1 + exp(Ziβ11 +X′iβ12)),
I L2(Wi; γ) = ZiX

′
iγ − log(1 + exp(X′iγ)).
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Step 3
Step 3: Compute q̂N(θ) and Ω̂(θ1, θ2) for later use,

q̂N(θ) =
1√
N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k),

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)

− 1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′).

An illustration of K=2-fold cross-fitting.

I1 Score I2 Nuisance I1 Nuisance I2 Score

∑
i∈I1ψ(Wi; θ, η̂1)

∑
i∈I2ψ(Wi; θ, η̂2)
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Make Inference for Target Parameter θ

Step 4: Take independent draws ξ ∼ N(0, Ω̂(θ0, θ0)) and calculate

R = R(ξ, hN , Ω̂), where null hypothesis H0

R(ξ, hN , Ω̂) = ξ2Ω̂(θ0, θ0)−1 − inf
θ

(V (θ)ξ + hN)2Ω̂(θ, θ)−1,

I V (θ) = Ω̂(θ, θ0)Ω̂(θ0, θ0)−1,

I hN(θ) = q̂N(θ)− Ω̂(θ, θ0)Ω̂(θ0, θ0)−1q̂N(θ0).

Step 5: Calculate the conditional critical value cα(h̃) as

cα(h̃) = min{c : P (R(ξ, hN , Ω̂) > c) ≤ α}.

Step 6: Reject the null hypothesis H0 : SN ∈ S0 when R(ξ, hN , Ω̂) ≥ cα(hN),

report the (1− α) confidence interval: CIα = {θ : R(ξ, hN , Ω̂) ≤ cα(hN)}.
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Notations

I Let c > 0, c0 ≥ 0, c1 ≥ 0, C1 > 0 be finite constants, and aN = p ∨N .

I Let {∆N}N≥1, {δN}N≥1(estimation errors) be sequences of positive

constants that converges to zero such that δN ≥ N−1/2.

I Let ‖δ‖0 represent the number of non-zero components of δ.

I Let P ∈ PN be the probability law of {Wi}Ni=1.

I Let P0 be family of distribution consistent with the null.

I We use a . b to denote a ≤ cb for some c > 0 that does not depends on N .

I The sequence {MN}N≥1 be a set of positive constants such that

MN ≥ (EP [(Zi ∨ ‖Xi‖∞)2q])1/2q.

Yukun Ma LATE with many covariates 22 / 44



Assumption: Regularity Conditions for the LATE

For P ∈ PN , the following conditions hold.

(i) The equations are satisfied with binary variables D and Z.

D = m0(Z,X) + v, EP [v|Z,X] = 0

Y = g0(Z,X) + u, EP [u|Z,X] = 0

}
→

Independence.

(Y,D) ⊥⊥ Z|X

Z = p0(X) + e, EP [e|X] = 0.

(ii) For some ε > 0, ε ≤ P (Z = 1|X) ≤ 1− ε almost surely.

(iii) Θ is compact.

(iv) EP [D|Z = 1]≥EP [D|Z = 0]. Assumption Comparison

(v) ‖u‖P,2 ≥ c0, and ‖EP [u2|X]‖P,∞ ≤ c1.

(vi) ‖Y ‖P,q ≤ c1.
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Assumption: Nuisance Parameter Estimators

Sparse eigenvalue conditions: with probability 1− o(1), for some lN →∞
slow enough, we have

1 . φmin(lNsN) ≤ φmax(lNsN) . 1.

spare eigenvalue

Sparsity: ‖β0
12‖0 + ‖β0

22‖0 + ‖γ0‖0 ≤ sN .

Parameters: ‖β0
12‖+ ‖β0

22‖+ ‖γ0‖ ≤ C1.

Covariates: for q > 4,

I inf‖ξ‖=1 EP [((Zi, X
′
i)ξ)

2] ≥ c.

I sup‖ξ‖=1 EP [((Zi, X
′
i)ξ)

2] ≤ C1.

I N−1/2+2/qM2
NsN log2 aN ≤ ∆N .
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Main Result
Propose an empirical process

GN(·) =
1√
N

N∑
i=1

(
ψ(Wi; ·, η0)︸ ︷︷ ︸
qN (·)

− EP [ψ(W ; ·, η0)]
)
,

and its estimator as

ĜN(θ) =
√
N
( 1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k)︸ ︷︷ ︸
q̂N (θ)

− EP [ψ(Wi; θ, η̂k)]
)
.

Theorem 1
Suppose that the above assumptions are satisfied. Under the null, we have

ĜN(θ) = GN(θ) + OP (N−1/2δN).

The process ĜN(·) weakly converges to a centered Gaussian process G(·) for all
P ∈ P0 as N →∞ with covariance function Ω(θ1, θ2) =
EP [(ψ(W ; θ1, η0)− EP [ψ(W ; θ1, η0)]) (ψ(W ; θ2, η0)− EP [ψ(W ; θ2, η0)])].
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Variance Estimation

Theorem 2
Under the same set of assumptions as above, the covariance function Ω(θ1, θ2) can
be consistently estimated uniformly for all P ∈ P0 by

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)

− 1

N2

K∑
k,k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′)

and for any ε > 0,

lim
N→∞

sup
P∈P0

P
{

sup
θ1,θ2

‖Ω̂(θ1, θ2)− Ω(θ1, θ2)‖ > ε
}

= 0.
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How It Works

Weak convergence over ΘI :

1 the convergence of the finite dimensional distribution of ĜN(θ) for
θ ∈ ΘI .

2 the stochastic equicontinuity of ĜN(θ) over ΘI :

lim
δ→0

lim sup
N→∞

P

(
sup

|θ1−θ2|≤δ
|ĜN(θ1)− ĜN(θ2)| > ε1

)
= 0,

for any ε1 > 0 and θ1, θ2 ∈ ΘI .
3 the boundedness of ΘI .

The equivalence between testing θ ∈ ΘI and P ∈ P0.

↪→ Uniformly consistent results for ĜN(·).
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Size Control

Theorem 3
Under the same set of assumptions above, the test that rejects the null hypothesis
H0 : SN ∈ S0 when R(qN(θ0), hN ,Ω) exceeds the (1− α) quantile cα(hN) of
its conditional distribution given hN(·) has uniformly correct asymptotic size.
Under the null, we have

lim
N→∞

sup
P∈P0

P (R(q̂N(θ0), hN , Ω̂) > cα(hN)) = α.
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Simulation Setup

Primitive random vector X′i is constructed by

Xi ∼ N

0,


U0 U1 · · · Udim(X)−2 Udim(X)−1

U1 U0 · · · Udim(X)−3 Udim(X)−2

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

Udim(X)−2 Udim(X)−3 · · · U0 U1

Udim(X)−1 Udim(X)−2 · · · U1 U0




with U = 0.5.

Consider N = 500, dim(X) = 5, 200, 400, and 600.︸ ︷︷ ︸
high-dimensional controls
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Simulation Setup, Continued

Consider the threshold crossing model:
I The latent tendency to receive treatment δi ∼ N (0, 1).
I The treatment assignment is given by Zi = 1{δi ≥ 0}.
I The potential treatment indicators Di(Zi) are given by

Di(0) = 1{Φ(δi) < PAT }, Di(1) = 1{Φ(δi) < 1− PNT },

with Φ(·) denotes the CDF of a standard normal distribution.
I The target parameter is set to θ0 = 1.
I The outcome Yi = Di +Xi + εi with εi ∼ N (0, 1).

Scenarios:
I Strongly identified case: (PAT , PNT ) = (0.25, 0.25)→ PC = 0.5
I Weakly identified case: (PAT , PNT ) = (0.45, 0.45)→ PC = 0.1

Completely unidentified
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Results

I compare the proposed method HD-QLR (this paper) with

the conditional QLR test (AM162) : robust against weak
identification but not against high dimensionality.

ML methods (CCDDHNR183 and BCFH174): robust against high
dimensionality but not against weak identification.

2Andrews and Mikusheva (2016).
3Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018).
4Belloni, Chernozhukov, Fernandez-Val, and Hansen (2017).
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Comparison: Strong Identification Power Curve

Power curve of nominal 5%: AM16 and HD-QLR (this paper)
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Comparison: Weak Identification

Power curve of nominal 5%: AM16 and HD-QLR (this paper)
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Comparison: Strong Identification

Power curve: CCDDHNR18, BCFH17 and HD-QLR (this paper)
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Comparison: Weak Identification

Power curve: CCDDHNR18, BCFH17 and HD-QLR (this paper)
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Comparison Across Four Approaches
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Example One: Hornung (2015)
“Railroads and growth in Prussia”

? Data: highly detailed city-level data from the historical German
state of Prussia.

Yit : urban population growth rate for city i during time period t.

Di : whether the city i was connected to the railroad in 1848.

Zi : whether the city i was located within a straight-line corridor
between two important cities.

Xi : whether the city had access to the main roads, whether the
city had waterway access, military population, age composition,
school enrollment rate, etc.
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Results
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Results, Continued
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Example Two: Ambrus, Field, and Gonzalez (2020)
“The Impact on Housing Prices of A Cholera Epidemic”

? “In August 1854, St. James experienced a sudden outbreak of
cholera when one of the 13 shallow wells that serviced the parish,
the Broad Street pump, became contaminated with cholera
bacteria.”

Yi : the log rental price of house i in 1864.

Di : whether house i had at least one cholera death.

Zi : whether house i fell inside the contaminated areas.

Xi : distance to the closest pump, distance to the fire station,
distance to the urinal, sewer access, among a total of 23 variables.
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Results

AM16 CCDDHNR18 BCFH17 HD-QLR (this paper)

95% CI [-2.160, [-1.132, [-1.291, [-1.080,
-0.670] 0.406] 0.576] 0.035]

length of CI 1.490 1.538 1.866 1.115

Table: Displayed are the CIs and the length of CI. Inference results are based
on 10 iterations of resampled cross fitting with K = 4 folds for cross fitting.
The number of observations N = 467.
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Takeaways

I develop an inference method for the high-dimensional LATE,
independent of the strength of identification.

The proposed method has uniformly correct asymptotic size.

The proposed test is robust against weak identification and high
dimensionality, outperforming other conventional methods.

The proposed method yields narrower confidence intervals than
conventional methods, as demonstrated in applications.
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Thank you!

feel free to email me any comments
yukun.ma@vanderbilt.edu
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Motivation: Lee et al. (2022)

Figure: American Economic Review 2013-2019

back
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Tuning Parameters

Lemma (Convergence rate for Lasso with logistic model)

Suppose some regularity assumptions hold. In addition, suppose that
the penalty choice λ1 = K1

√
N log(pN) and λ2 = K2

√
N log(pN)

for K1,K2 > 0. Then with probability 1− o(1),

‖(β̂11, β̂12)− (β0
11, β

0
12)‖ ∨ ‖γ̂ − γ0‖ .

√
sN log(pN)

N
.

Lemma (Convergence rate for Lasso with OLS)

Suppose some regularity assumptions hold. Moreover, suppose that the
penalty choice λ3 = K3

√
N log(pN) for K3 > 0. Then with

probability 1− o(1),

‖(β̂21, β̂22)− (β0
21, β

0
22)‖ .

√
sN log(pN)

N
.

back
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Null Hypothesis

Define SN(·) = EP [N−1/2
∑N
i=1 ψ(Wi; ·, η0)].

Case 1: H0 : θ = θ0 with assuming θ is point-identified

↪→ SN(θ0) = 0.

Case 2: H0 : θ ∈ ΘI with the identified set ΘI ⊂ Θ when point
identification fails

↪→ SN(θ) = 0 for ∀θ ∈ ΘI .

Let S0 be the collection of function SN(·) satisfying SN(θ) = 0.

↪→ H ′
0 : SN(·) ∈ S0.

back
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Spare eigenvalue

For any T ⊂ [p+ 1], δ = (δ1, · · · , δp+1)′ ∈ Rp+1 with δT,j = δj if
j ∈ T and δT,j = 0 if j /∈ T . Define the minimum and maximum
sparse eigenvalue by

φmin(m) = inf
‖δ‖0≤m

‖(Zi, X′i)δ‖2,N
‖δT‖1

φmax(m) = sup
‖δ‖0≤m

‖(Zi, X′i)δ‖2,N
‖δT‖1

.

back
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Identification Assumption Comparison

In my paper:

EP [D|Z = 1]≥EP [D|Z = 0].

In weak identification literature:

EP [D|Z = 1]− EP [D|Z = 0] =
C1√
N

with C1 > 0.

In ML literature:

EP [D|Z = 1]− EP [D|Z = 0] ≥ C2 with C2 > 0.

back
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Power Curve

back
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Comparisons: Unidentified case

Power curve: AM16 with HD-QLR (this paper)
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Comparisons: Unidentified Case back

Power curve: CCDDHNR18, BCFH17 with HD-QLR (this paper)
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