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Abstract

I For dyadic data, we develop a novel dyadic cross fitting
algorithm to remove over-fitting biases under arbitrary
dyadic dependence.

I Dyadic data, e.g.,

I free/preferential trade agreement,

I friendship, and

I financial relationships, etc.

I DML1 ⇒ generic method of estimation & inference for
parametric, semi-parametric, high-dimensional models, etc.
based on machine learning (ML).

I We illustrate an application of the general framework to
high-dimensional network link formation models.

I We reconfirm that distance and the size of economics are
two important determinants of FTA.

1
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)



Dyadic Data

Consider the sample {Wij : 1 ≤ i ≤ N, 1 ≤ j ≤ N}.
I Assume the sample contains N nodes with no self link

i 6= j.

I Assume that

Wij ⊥⊥Wi′j′

unless {i, j}
⋂
{i′, j′} 6= ∅.

· · · But if {i, j}
⋂
{i′, j′} 6= ∅, then we allow for

dependence.

I Notation:

N+2 := {(i, j) ∈ N+2 : i 6= j}.

I An example: Free Trade Agreements



Free Trade Agreements (FTA)

Analyze the determinants of FTA,

I Consider the empirical model

EP [Yij|Dij, Xij] = Λ(Dijθ +X′ijβ) for (i, j) ∈ [N ]2.

I Pioneering analysis of economic factors of FTA by Baier
and Bergstrand (2004)

I a greater distance between economics makes an FTA less
beneficial⇒ the population-weighted bilateral distance
between i and j in kilometer.

I larger sizes of economics make an FTA more beneficial⇒
the sum of the logarithms of the per-capita GDP.

I more similar economic sizes make an FTA more beneficial
⇒ the absolute difference of the logarithms of the
per-capita GDP in baseline year.

I wider relative factor endowments make an FTA more
beneficial⇒ the absolute difference of the logarithms of the
capital-labor ratios in baseline year.



Double/Debiased Machine Learning (DML)

I Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey, and Robins (CCDDHNR, 2018) provide a general
DML toolbox of estimation & inference for parametric,
semi-parametric, high-dimensional models, etc:

DML ≈ Neyman Orthogonal Score + Cross-Fitting.

I The former mitigates the slow convergence rates of
ML-based estimates of nuisance parameters.

I The latter removes the error induced by overfitting.

I i.i.d. sampling is crucial for cross-fitting.

I Our dyadic sampling 6= i.i.d.



Objective of the Paper

I We propose a novel dyadic cross-fitting algorithm and
theories for estimation and inference using machine
learning of nuisance parameters when data are dyadic.

I This objective is motivated by:

I empirical applications that use dyadic data are lacking
theoretical support (determinants of FTA).

I recently growing interest in use of double/debiased machine
learning methods of estimation and inference for
high-dimensional models in today’s big data environments.



Relations to the Literature

I Dyadic cluster robust variance formulas:

I Fafchamps and Gubert (2007) propose dyadic cluster robust
variance estimators for the OLS and logit.

I Cameron and Miller (2014) generalize the dyadic cluster
robust variance estimator for GMM and M-estimation.

I Asymptotic behavior:

I Davezies, D’Haultfoeuille, and Guyonvarch (2019) study the
asymptotic behavior of empirical process and their
bootstrap counterparts of dyadic data.

I Chiang, Kato and Sasaki (2020) develop methods of
inference for high-dimensional parameters.

I Determinants of FTAs:

I Baier and Bergstrand (2004) identify a parsimonious set of
key economic determinants for the formation of free trade
agreements: trade costs, the market size of the free trade
zone, and the similarity of trading partners in terms of
economic development and/or factor-endowments.
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Setup

I Assume

EP [ψ(Wij; θ0, η0)] = 0.

I The nuisance parameter η may be finite-, high-, or
infinite-dimensional. Its true value is denoted by η0 ∈ T .

I Object of interest: the true value θ0 ∈ Θ of θ.

I Consider a linear score

ψ(w; θ, η) = ψa(w; η)θ + ψb(w; η)

with

I low-dimensional parameter vector θ ∈ Θ ⊂ Rdθ .

I nuisance parameter η ∈ T for a convex set T .



Neyman Orthogonality Condition

I Path-wise derivative map Dr

Dr[η − η0] := ∂r {EP [ψ(W ; θ0, η0 + r(η − η0)]} η ∈ T

I Notation of Dr[η − η0] evaluated at r = 0:

∂ηEP [ψ(W ; θ0, η0)] [η − η0] := D0 [η − η0] η ∈ T

I The Neyman orthogonality condition holds at (θ0, η0)
with respect to a nuisance realization set Tn ⊂ T if

∂ηEPψ(W ; θ0, η0)[η − η0] = 0

holds for all η ∈ Tn.

I Can be generalized to near orthogonality.



Review of DML (CCDDHNR) under i.i.d Sampling

I Randomly partition {1, ..., N} into K parts {I1, ..., IK}.

I For each k ∈ {1, ...,K}, obtain an estimate

η̂k = η̂
(
(Wi)i∈{1,...,N}\Ik

)
of the nuisance parameter η by some machine learner using only
the subsample with i ∈ {1, ..., N} \ Ik.

I Define θ̃, the double/debiased machine learning (DML)
estimator for θ0, as the solution to

1

K

K∑
k=1

En,k[ψ(W ; θ̃, η̂k)] = 0,

where En,k[f(W )] = 1
|Ik|

∑
i∈Ik f(Wi) denotes the subsample

empirical mean using only data with i ∈ Ik.



DML (CCDDHNR) under i.i.d Sampling, Continued

Figure: An illustration of 2-fold cross-fitting.

Score Nuisance Nuisance Score

En,1[ψ(W ; θ̃, η̂1)] En,2[ψ(W ; θ̃, η̂2)]

⇓

The DML estimator θ̃ is obtained by solving

En,1[ψ(W ; θ̃, η̂1)] + En,2[ψ(W ; θ̃, η̂2)] = 0

I If i.i.d. is violated (as in dyadic sampling), then blue and
red subsamples are no longer independent.



Dyadic Cross Fitting

I Notations:

I [r] := {1, ..., r} for any r ∈ N.
I For any finite set I with I ⊂ [N ], |I| denote the

cardinality of I, and Ic denote the complement of I.
I N+2 = {(i, j) ∈ N+2 : i 6= j} denote the set of two-tuple

of N+ without repetition.



Dyadic Cross Fitting

I Randomly partition [N ] into K parts {I1, ..., IK} .

I For each k ∈ [K], obtain an estimate

η̂k = η̂
(
(Wij)(i,j)∈([N]\Ik)2

)
of the nuisance parameter η by some machine learner using only the
subsample with (i, j) ∈ ([N ] \ Ik)2.

I Define θ̃, the dyadic machine learning estimator for θ0, as the solution
to

1

K

∑
k∈[K]

E|Ik|[ψ(W ; θ̃, η̂k)] = 0,

where E|Ik|[f(W )] = 1
|Ik|(|Ik|−1)

∑
(i,j)∈I2

k
f(Wij) denotes the

subsample empirical mean using only data with (i, j) ∈ I2
k .



2-Fold Cross-Fitting under Dyadic Sampling

Figure: An illustration of 2-fold cross fitting

E|I1|[ψ(W ; θ̃, η̂1)]



2-Fold Cross-Fitting under Dyadic Sampling

Figure: An illustration of 2-fold cross fitting

E|I2|[ψ(W ; θ̃, η̂2)]



Dyadic Cross Fitting

I We call this procedure K-fold dyadic cross-fitting.

I For each k ∈ [K],

I The nuisance parameter η̂k is computed using the
subsample with (i, j) ∈ ([N ] \ Ik)2.

I The score E|Ik|[ψ(W ; ·, ·)] is computed using the

subsample with (i, j) ∈ I2k .

I This two-step computation is repeated K times for every
partitioning pair k ∈ [K].



Inference

I We propose to estimate the asymptotic variance of
√
N(θ̃ − θ0)

by σ̂2 = Ĵ−1Γ̂(Ĵ−1)′, where

Ĵ =
1

K

∑
k∈[K]

E|Ik|[ψ
a(W ; η̂k)],

Γ̂ =
1

K

∑
k∈[K]

|Ik| − 1

(|Ik|(|Ik| − 1))2

[ ∑
i∈Ik

∑
j,j′∈Ik
j,j′ 6=i

ψ(Wij ; θ̃, η̂k)ψ(Wij′ ; θ̃, η̂k)′

+
∑
j∈Ik

∑
i,i′∈Ik
i,i′ 6=j

ψ(Wij ; θ̃, η̂k)ψ(Wi′j ; θ̃, η̂k)′

+
∑
i∈Ik

∑
j,j′∈Ik
j,j′ 6=i

ψ(Wij ; θ̃, η̂k)ψ(Wj′i; θ̃, η̂k)′

+
∑
j∈Ik

∑
i,i′∈Ik
i,i′ 6=j

ψ(Wij ; θ̃, η̂k)ψ(Wji′ ; θ̃, η̂k)′
]
.

I For a dθ-dimensional vector r, the (1− a) confidence interval
for the linear functional r′θ0 can be constructed by

CIa := [r′θ̃ ± Φ−1(1− a/2)
√
r′σ̂2r/N ].
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Notations

I Let c0 > 0, c1 > 0, s > 0, q ≥ 4 be finite constants with
c0 ≤ c1.

I Let {δN}N≥1 (estimation errors), {∆N}N≥1 (probability
bounds) and {τN}N≥1 be sequences of positive constants

that converge to zero such that δN ≥ N−1/2.

I Let K ≥ 2 be a fixed integer.



Assumption Summary

I Linear Score

I Sampling

I Linear Neyman Orthogonal Score

I Score Regularity and Nuisance Parameter Estimators

I Nonlinear and Nonseparable Score

I Sampling

I Nonlinear Moment Condition Problem with Approximate
Neyman Orthogonality

I Score Regularity and Nuisance Parameter Estimators



Assumption: Dyadic Sampling

Suppose N →∞. The following conditions hold.

(i) (Wij)(i,j)∈N2 is an infinite sequence of jointly

exchangeable p-dimensional random vectors. That is, for
any permutation π of N, we have

(Wij)(i,j)∈N2

d
= (Wπ(i)π(j))(i,j)∈N2.

(ii) (Wij)(i,j)∈N2 is dissociated. That is, for any disjoint

subsets A,B of N+, with min(|A|, |B|) ≥ 2,
(Wij)(i,j)∈A2 is independent of (Wij)(i,j)∈B2.



Aldous-Hoover-Kallenberg representation

I Assumption 1 (i) & (ii) together imply the
Aldous-Hoover-Kallenberg representation (e.g. Kallenberg,
2006; Corollary 7.35), which states that there exists an
unknown (to the researcher) Borel measurable function τn
such that

Wij
d
= τn(Ui, Uj, U{i,j}),

where {Ui, U{i,j} : i, j ∈ [N ], i 6= j} are some i.i.d.
latent shocks that can be taken to be Unif[0, 1] without
loss of generality – see Aldous (1981).

I We can exploit the independence over them.



Assumption: Linear Neyman Orthogonal Score

For N ≥ 4 and P ∈ PN , the following conditions hold.

(i) The map η 7→ EP [ψ(W12; θ, η)] is twice continuously Gateaux
differentiable on T .

(ii) ψ satisfies either the Neyman orthogonality condition or the
Neyman near orthogonality condition.

(iii) The identification condition holds; namely, the singular values of
the matrix J0 := EP [ψa(W12; η0)] are between c0 and c1.



Assumption: Score Regularity and Nuisance Parameter Estimators

For all N ≥ 4 and P ∈ PN , the following conditions hold.

(i) Given random subsets I ⊂ [N ] such that |I| = bN/Kc, the nuisance
parameter estimator η̂ = η̂((Wij)(i,j)∈([N]\I)2), belongs to TN with
probability 1−∆N , where TN contains η0.

(ii) All eigenvalues of the matrix

Γ = EP [ψ(W12; θ0, η0)ψ(W13; θ0, η0)] + EP [ψ(W12; θ0, η0)ψ(W31; θ0, η0)]

+ EP [ψ(W21; θ0, η0)ψ(W13; θ0, η0)] + EP [ψ(W21; θ0, η0)ψ(W31; θ0, η0)]

are bounded from below by c0.



Main Result

Suppose that the above assumptions are satisfied. If
δN ≥ N−1/2 for all N ≥ 4, then

√
Nσ−1(θ̃ − θ0) =

√
N

K

∑
k∈[K]

E|Ik|ψ̄(Wij) + OPN (ρN )  N(0, Idθ )

holds uniformly over P ∈ PN , where the size of the remainder
terms follows

ρN := N−1/2 + rN + r′N + (N1/2λN)︸ ︷︷ ︸
Neyman Near
Orthogonal

+N1/2λ′N . δN ,

the influence function takes the form
ψ̄(·) := −σ−1J−1

0 ψ(·; θ0, η0), and the approximate variance
is given by

σ2 := J−1
0 Γ(J−1

0 )′.



Variance Estimation

Under the same set of assumptions as above,

σ̂2 = σ2 + OP(ρn).

Furthermore, the statement of the theorem in the previous slide
holds true with σ̂2 in place of σ2.



Assumption: Nonlinear and Nonseparable Scores

For N ≥ 4 and P ∈ PN , the following conditions hold.

(i) Θ contains a ball of radius c1N
−1/2 logN centred at θ0.

(ii) ψ satisfies either the Neyman orthogonality condition or the
Neyman near orthogonality condition.

(iii) For all θ ∈ Θ, the identification relation

2||EP [ψ(W12; θ, η0)]|| > ||J0(θ − θ0)|| ∧ c0

is satisfied with the Jacobian matrix

J0 := ∂θ′{EP [ψ(W ; θ, η0)]}|θ=θ0

having singular values between c0 and c1.



Assumption: Score Regularity and Nuisance Parameter Estimators

For all N ≥ 4 and P ∈ PN , the following conditions hold.

(i) The function class
F1 = {ψj(·; θ, η) : j = 1, ..., dθ, θ ∈ Θ, η ∈ TN} is suitably
measurable and its uniform entropy numbers satisfy

sup
Q

logN(F1, ‖ · ‖Q,2, ε‖F1‖Q,2) 6 vN log(aN/ε), for all 0 < ε ≤ 1,

where F1 is a measurable envelope for F1 that satisfies
‖F1‖P,q 6 KN .

(ii) All eigenvalues of the matrix

Γ = EP [ψ(W12; θ0, η0)ψ(W13; θ0, η0)] + EP [ψ(W12; θ0, η0)ψ(W31; θ0, η0)]

+ EP [ψ(W21; θ0, η0)ψ(W13; θ0, η0)] + EP [ψ(W21; θ0, η0)ψ(W31; θ0, η0)]

are bounded from below by c0.



Main Result

Suppose that the above assumptions are satisfied. If
δN ≥ N−1/2+1/q logN and N−1/2 logN ≤ τN ≤ δN for all N ≥ 4,
then

√
Nσ−1(θ̃ − θ0) =

√
N

K

∑
k∈[K]

E|Ik|ψ̄(Wij) + OPN (ρN )  N(0, Idθ )

holds uniformly over P ∈ PN , where the size of the remainder
terms follows

ρN := N−1/2+1/q + r′N log1/2(1/r′N ) +N1/2λN +N1/2λ′N . δN ,

the influence function takes the form ψ̄(·) := −σ−1J
−1
0 ψ(·; θ0, η0),

and the approximate variance is given by

σ2 := J−1
0 Γ(J−1

0 )′.



Variance Estimation

Under the same set of assumptions as above,

σ̂2 = σ2 + OP(ρn),

for σ̂2 = Ĵ−1Γ̂(Ĵ)−1, where

Ĵ :=
1

K

∑
k∈[K]

E|Ik|[∂θψ(W ; θ, η̂k)|θ=θ̃].

Yukun Ma



Our Approach to the Variance Formula

I The Aldous-Hoover-Kallenberg representation

Under our sampling assumption, there exists a measurable function
τn such that

Wij = τn(Ui, Uj, U{i,j}) a.s.,

where U ’s are independent uniform [0, 1] random variables.

I The Hájek projection of Gnf =
√
n

n(n−1)

∑
(i,j)∈[N]2

f(Wij)

on functions of each single (Ul)
n
l=1 can be written as

Hnf =
√
n

n(n−1)

∑
l∈[n]{

∑
j 6=l EP [f(Wlj)|Ul] +

∑
i6=l EP [f(Wil)|Ul]}.
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High-dimensional Logit Dyadic Link Formation Models

I Logit model

EP [Yij|Dij, Xij] = Λ(Dijθ0 +X′ijβ0) for (i, j) ∈ [N ]2

where Λ(t) = exp(t)
1+exp(t)

for all t ∈ R.

I The goal is to construct a generated random variable
Zij = Z(Dij, Xij) such that

EP
[{
Yij − Λ

(
Dijθ0 +X′ijβ0

)}
Zij
]

= 0,

∂

∂θ
EP

[{
Yij − Λ

(
Dijθ +X′ijβ0

)}
Zij
]∣∣∣∣
θ=θ0

6= 0,

∂

∂β
EP

[{
Yij − Λ

(
Dijθ0 +X′ijβ

)}
Zij
]∣∣∣∣
β=β0

= 0.



High-dimensional Logit Dyadic Link Formation Models

I Consider the weighted regression of Dij on Xij : (Belloni,
Chernozhukov, Wei (2016) )

fijDij = fijX
′
ijγ0 + Vij, with EP [fijVijXij] = 0,

where

fij := wij/σij, σ2
ij := Var (Yij|Dij, Xij) ,

wij := Λ(1) (Dijθ0 +X′ijβ0

)
, and Λ(1)(t) =

∂

∂t
Λ(t).

I The optimal generated random variable is given by

Zij := Vij/σij.

I Under the logit link Λ, fij , σ
2
ij , wij and Zij are given by

f2
ij = wij,

σ2
ij = wij = Λ

(
Dijθ0 +X′ijβ0

) {
1− Λ

(
Dijθ0 +X′ijβ0

)}
, and

Zij,0 = Dij −X′ijγ0.

I The Neyman orthogonal score

ψ(Wij; θ, η) = {Yij − Λ(Dijθ +X′ijβ)}(Dij −X′ijγ),

where η = (β′, γ′)′ denotes the nuisance parameters.



Algorithm

I Randomly partition [N ] into K parts {I1, ..., IK}.
I For each k ∈ [K]: obtain an post-lasso logistic estimate (θ̃k, β̃k) of

the nuisance parameter by using only the subsample of those
observations with dyadic indices (i, j) in ([N ] \ Ik)2,

(θ̂k, β̂k) ∈ arg min
θ,β

E|Ic
k
| [L(Wij; θ, β)] +

λ1

|Ick|
‖(θ, β)‖1

(θ̃k, β̃k) ∈ arg min
θ,β

E|Ic
k
| [L(Wij; θ, β)] : supp(θ, β) ⊆ supp(θ̂k, β̂k).

I For each k ∈ [K]: calculate the weight

f̂2
ij,k = Λ

(
Dij θ̃k +X′ijβ̃k

) {
1− Λ

(
Dij θ̃k +X′ijβ̃k

)}
where

(i, j) ∈ ([N ] \ Ik)2.



Algorithm, Continued

I For each k ∈ [K]: obtain an post-lasso OLS estimate γ̃k of the
nuisance parameter by using only the subsample of those observations
with dyadic indices (i, j) in ([N ] \ Ik)2,

γ̂k ∈ arg min
γ

E|Ic
k
|

[
f̂2
ij,k

(
Dij −X′ijγ

)2]
+

λ2

|Ick|
‖γ‖1

γ̃k ∈ arg min
γ

E|Ic
k
|

[
f̂2
ij,k

(
Dij −X′ijγ

)2]
: supp(γ) ⊆ supp(γ̂k).

I Solve the equation 1
K

∑
k∈[K] E|Ik|[ψ(W ; θ, η̃k)] = 0 for θ to obtain

the dyadic machine learning estimate θ̌, with η̃k = (β̃′k, γ̃
′
k)
′ and

(i, j) ∈ I2
k .



Algorithm, Continued

I Let the dyadic Lasso DML asymtotic variance estimator be given by

σ̂2 = Ĵ−1Γ̂(Ĵ−1)′ where

Ĵ = −
1

K

∑
k∈[K]

E|Ik|Λ(Dij θ̌ +X
′
ij β̃k){1− Λ(Dij θ̌ +X

′
ij β̃k)}(Dij −X

′
ij γ̃k)Dij ,

Γ̂ =
1

K

∑
k∈[K]

|Ik| − 1

(|Ik|(|Ik| − 1))2

[ ∑
i∈Ik

∑
j,j′∈Ik
j,j′ 6=i

ψ(Wij ; θ̌, η̃k)ψ(Wij′ ; θ̌, η̃k)
′

+
∑
j∈Ik

∑
i,i′∈Ik
i,i′ 6=j

ψ(Wij ; θ̌, η̃k)ψ(Wi′j ; θ̌, η̃k)
′

+
∑
i∈Ik

∑
j,j′∈Ik
j,j′ 6=i

ψ(Wij ; θ̌, η̃k)ψ(Wj′i; θ̌, η̃k)
′

+
∑
j∈Ik

∑
i,i′∈Ik
i,i′ 6=j

ψ(Wij ; θ̌, η̃k)ψ(Wji′ ; θ̌, η̃k)
′
]
.

I Report the estimate θ̌, its standard error
√
σ̂2/N , and/or the

(1− a) confidence interval

CIa := [θ̌ ± Φ−1(1− a/2)
√
σ̂2/N ].
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DGP

For each (i, j) ∈ [N ]2, generate the random vector
(Dij, X

′
ij, εij)

′ according to

Dij =
1

3
D̃i +

1

3
D̃j +

1

3
D̃ij,

Xij =
1

3
X̃i +

1

3
X̃j +

1

3
X̃ij,

εij = F−1
Logistic(0,1) ◦ FNormal(0,1)

(√
1

3
ε̃i +

√
1

3
ε̃j +

√
1

3
ε̃ij

)
,

Construct Yij = 1{Dijθ0 +X′ijβ0 ≥ ε}.



Monte Carlo Simulation

Table: Simulation results based on 2,500 Monte Carlo iterations
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Empirical Application: Determinants of FTA

Table: Estimation and inference
based on 50 iterations of resampled cross fitting
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Conclusions

I For dyadic data, we develop a novel cross fitting algorithm
to remove over-fitting biases under arbitrary dyadic
dependence.

I This novel dyadic cross fitting method enables
√
N

consistent estimation and inference robustly against dyadic
dependence.

I We illustrate an application of the general framework to
high-dimension network link formation models.

I We confirm that trade costs and market size are key
determinants of FTA formation.



Thank you!
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