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an easy-to-implement algorithm to infer the high-dimensional LATE by inverting our test statistic

and employing the double/debiased machine learning method. Simulations indicate that our test is

robust against both weak identification and high dimensionality concerning size control and power

performance, outperforming other conventional tests. Applying the proposed method to railroad
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that our methodology yields confidence intervals that are 49% to 92% shorter than conventional
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1 Introduction

We propose a high-dimensional conditional test statistic with uniformly correct asymptotic size. The

proposed method exhibits robustness against weak identification and high dimensionality in the LATE

framework. Furthermore, we provide a practical guideline, including a step-by-step algorithm, for

drawing inferences for the LATE with high-dimensional controls. This algorithm entails (1) inverting

the proposed statistics to derive confidence intervals and (2) applying machine-learning approaches to

overcome the regularization bias and overfitting within the high-dimensional model. The objective is

motivated by the persistent challenges of the weak-instrument problem in empirical research and the

prevalence of rich data in the contemporary big data era.

In models where certain explanatory variables correlate with the error term, least squares esti-

mators yield inconsistent coefficient estimates. To address this, instrumental variables (IV) are often

employed, as they are uncorrelated with the error term but correlated with the endogenous explana-

tory variables. Nonetheless, if the correlation between the instruments and endogenous variables is

weak, IV estimation becomes imprecise, resulting in unreliable tests and confidence intervals. This

presents the weak-instrument problem, a notable concern in empirical practice.

Empirical researchers often aim to make inferences about the coefficients of endogenous variables

in IV regression. An example is the influential study by Angrist and Krueger (1991), using quarter of

birth as an IV to estimate returns from schooling. However, Bound et al. (1995) argue that Angrist

and Krueger’s results may be unreliable due to the weak correlation between one’s quarter of birth

and their education attainment. Moreover, the common practice of pretesting, with a rule-of-thumb

F-statistic threshold of 10 proposed by Staiger and Stock (1997), is challenged by Lee et al. (2022). In

their paper, they introduce a novel critical value function and reveal that achieving a true 5 percent

test with critical value of 1.96 instead requires an F exceeding 104.7. Applying this criterion to their

sample of 61 American Economic Review papers published between 2013 and 2019, they find that a

quarter of the specifications initially presumed to be statistically significant are, in fact, insignificant.

Angrist and Imbens (1995a) introduce a framework for estimating the local average treatment

effect (LATE). This estimate captures the treatment effect for a group of compliers who decide to take

the treatment if and only if assigned to the treatment group, but not if assigned to the control group.
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Employing the IV method to estimate LATE has garnered considerable attention in the literature.

Within the LATE framework, weak identification emerges either when instruments correlate weakly

with endogenous regressors or when the proportion of compliers is relatively small. We are particularly

interested in exploring and addressing this weak identification issue within the LATE framework

for several reasons. On the one hand, while compliers might be a minority, they often represent

the population of critical interest to policymakers. Take the Vietnam-era draft lottery in Angrist

(1990) as an example. Even though compliers constituted a minority, approximately 0.10 to 016,

their experiences provide valuable insights into the draft’s direct consequences for individuals at the

decision-making margin, thereby shedding light on the immediate effects of veteran status on civilian

earnings. On the other hand, natural experiments often present challenges of weak identification,

especially when researchers have no control over the size of the complier group, as highlighted by

the instrument strength concerns in Angrist and Krueger (1991). Our objective is to yield reliable

outcomes in situations where interventions first impact only a small group, both theoretically and

practically. Understanding this impact is crucial for expanding or scaling such interventions.

The issue of weak instruments has been rigorously explored in the literature, leading to the de-

velopment of diverse econometric techniques to estimate and infer about a structural parameter θ

based on moment equailities. Specifically, many models suggest that certain functions of the data

and model parameters possess a mean of zero when evalueted at the true parameter value θ0. Our

research primarily concentrates on testing the hypothesis that this mean function is indeed zero at θ0,

which is the true LATE value. The existing literature proposes numerous tests for this hypothesis, as

demonstrated by works such as Stock and Wright (2000), Kleibergen (2002), and Andrews and Miku-

sheva (2016). While these studies present methods tailored for inference about target parameters in

the presence of weak identification, they overlook models equipped with high-dimensional covariates.

However, these models are becoming increasingly prevalent in today’s big-data environment. On the

one hand, accounting for a large number of covariates can bolster the validity of the IV within the

LATE framework. On the other hand, established identification-robust methods encounter challenges

in the presence of many covariates, particularly experiencing severe size distortions in high-dimensional

covariates scenarios.

Our proposed method addresses these challenges by accommodating any arbitrary N/p ratio, where
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N is the sample size and p is the dimensionality of covariates. This feature ensures that our method

maintains correct size control regardless of the covariate dimensionality. Our technical innovation

diverges from the typical approach of proposing a consistent LATE estimator. Instead, we introduce

a stochastic process and its uniformly consistent estimator over the probability law under the null

hypothesis. Building on this, we introduce a test statistic that exhibits uniformly correct asymptotic

size. Our contribution generalizes prior research by developing an identification-robust method that

employs machine-learning techniques, enabling us to explore a broader set of controls than previously

explored.

Based on our simulation results, our proposed method outperforms the conventional identification-

robust method. For comparison, we selected the conditional quasi-likelihood ratio test introduced by

Andrews and Mikusheva (2016) as the representative conventional identification-robust test. Our

findings demonstrate that within the high-dimensional LATE framework, especially when the dimen-

sionality of covariates is comparable to the sample size, our method consistently maintains correct

size control and demonstrates good power performance. Conversely, the traditional approach experi-

ences severe size distortion, both in strongly identified cases (where the share of compliers is 0.5) and

in weakly identified scenarios (where the share of compliers is 0.1). This discrepancy arises because

the conventional identification-robust approach lacks a feature selection stage. Instead, it incorpo-

rates all covariates, leading to potential overfitting issues. In contrast, our proposed method employs

machine-learning techniques for model selection.

Similarly, our proposed method also surpasses existing machine-learning approaches. Here, we

select two machine-learning methods: one proposed by Chernozhukov et al. (2018a) and the other by

Belloni et al. (2017). While these conventional machine-learning techniques demonstrate robustness in

high-dimensional contexts, they underperform, showing significant size distortion and power reduction

in weak identification scenarios. This shortcoming arises because they construct confidence intervals

based on the normal distribution rather than employing the test inversion of an identification-robust

test statistic. Overall, our proposed method consistently exhibits robustness to both weak identifica-

tion and high dimensionality in terms of size control and power performance. We highlight that our

test maintains uniform size control across a broad range of data-generating processes, accommodating

both low and high-dimensional scenarios, as well as weakly and strongly identified cases.
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In our empirical studies, we employ our proposed method to re-examine two IV estimations. The

first is by Hornung (2015) that investigates the effect of railroad access on city population growth in

the 19th-century Prussia. The second is by Ambrus et al. (2020), which explores the long-term impact

of cholera-related deaths on rental prices in a neighborhood of 19th-century London. For the first

application, depending on various specifications, the dataset includes approximately 900 observations

and 200 covariates. Our analysis reveals that our proposed method produces narrower confidence

intervals, in comparison to the conventional identification-robust test and existing machine-learning

methods used in our simulation study. The shorter confidence intervals indicate the efficiency of our

proposed method, which stems from addressing both the weak identification issue and the inclusion

of high-dimensional covariates to mitigate unobserved confoundedness. Moreover, coefficients that are

initially significant with the conventional identification-robust method often become insignificant when

our method is applied. The second study yields similar results, further underscoring the robustness

and consistency of our approach.

This paper advances the well-established literature on weak identification by providing procedures

for inference and the construction of confidence intervals for the LATE parameters in high-dimensional

models. To the best of our knowledge, this is the first paper to draw inferences about the high-

dimensional LATE model, irrespective of identification strength. We develop a high-dimensional

conditional test statistic with uniformly correct asymptotic size. Furthermore, we provide a practical

guideline, complete with a step-by-step algorithm, for drawing inferences and determining confidence

intervals for the high-dimensional LATE using machine-learning methods, specifically based on the

lasso technique.

1.1 Relations to the Literature

This paper contributes to the literature on weak identification and high-dimensional models by pro-

viding a test tailored for making inferences regarding the LATE in the presence of high-dimensional

covariates.

Since the 1990s, weak identification in the IV context has received considerable attention in the

literature.1 Staiger and Stock (1997) conceptualized the coefficients on the instruments in the first-

1See works by Staiger and Stock (1997), Bound et al. (1995), Stock and Wright (2000), Kleibergen (2002), Stock and
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stage equation as residing in a N−1/2 vicinity of zero, aptly naming this the “local-to-zero” weakly

correlated case. To test if the mean function equals to zero at the true parameter value θ0, Stock and

Wright (2000) pioneered the concepts of weakly identified Generalized Mothod of Moments (GMM).

They introduced the S statistic as the quadratic form of the objective function, which is a generalized

form of the Anderson-Rubin test statistic (Anderson and Rubin (1949)) and follows a χ2 asymptotic

distribution under the null hypothesis. Later, Kleibergen (2005) proposes the K statistic, capitalizing

on the asymptotic independence between the Jacobian estimator of the objective function and the

sample average of the moment. Despite their innovative approaches, these tests often yield limited

power in weak identification scenarios, as they primarily focus on processes local to the point θ0 and

ignore a significant amount of information.

To address this issue, Moreira (2003) introduces the conditional likelihood ratio test for weakly

identified linear IV models based on the conditional distribution of nonpivotal statistics. This test,

centered on structural coefficients, boasts enhanced power compared to its predecessors, especially

under weak identification. More recently, Andrews and Mikusheva (2016) have developed conditional

test statistics to test the hypothesis that θ0 satisfies the moment condition. Notably, their methodology

does not hinge on assumptions regarding point identification or identification strength. Their approach

has desirable power properties since the test depends on the full path of the observed process without

losing information. However, none of these papers considers models with high-dimensional covariates,

which are commonplace in today’s big-data environment.

Over the past decade, there has been a surge in the literature on machine-learning-based econo-

metric methods for high-dimensional models. In such models, the dimensionality of parameters is

potentially much larger than the sample size of available data (p� N). Belloni et al. (2015) advanced

a Neyman orthogonal score for a Z-estimation framework in the presence of high-dimensional nuisance

parameters. Subsequently, Belloni et al. (2018) construct a confidence interval rooted in the Neyman

orthogonality condition in the high-dimensional setting. In a series of contributions, Chernozhukov et

Yogo (2002), Moreira (2003), Kleibergen (2005), Andrews et al. (2006), Moreira (2009), Andrews and Mikusheva (2016),

Andrews and Guggenberger (2019), Moreira and Moreira (2019), Mikusheva and Sun (2022) for various identification-

robust inference methods developed over the past three decades. For detailed surveys on weak identification literature,

see Stock et al. (2002), Dufour (2003), Andrews and Stock (2005), and Andrews et al. (2019).
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al. (2013,2016,2017) establish the Central Limit Theorem (CLT) for high-dimensional models using

the Gaussian approximation approach. Belloni et al. (2014) present an overview of techniques for

estimating and inferring in high-dimensional datasets. Chernozhukov et al. (2018a) introduces the

double/debiased machine learning (DML) methodology in the i.i.d setting. They combine the Ney-

man orthogonality condition 2 and cross-fitting methods. Most recently, Chernozhukov et al. (2022)

outline a general construction for the doubly robust moment function, ensuring robustness against

nonparametric or high-dimensional first steps. However, none of these papers on high-dimensional

models consider weak identification issues.

This paper also relates to the literature on IV estimation of LATE. Angrist and Imbens (1995a)

pioneered the introduction of the simple IV estimand for the average treatment effect for compli-

ers. Motivated by Angrist and Krueger (1991), Angrist and Imbens (1995b) broaden the scope of

LATE to encompass ordered treatments, such as years of schooling. A subsequent wave of research

delves into incorporating covariates into LATE estimation, including Imbens and Rubin (1997), An-

grist et al. (2000), Hirano et al. (2000), Yau and Little (2001), and Abadie (2003), employing either

parametric or semiparametric estimation approaches. Tan (2006) proposes a LATE estimator with

robustness against the misspecification of either the propensity score model or the outcome regression

model. Hong and Nekipelov (2010) derive the semiparametric efficiency bounds for conditional and

unconditional LATE. Frölich (2007) and Ogburn et al. (2015) provide the fully nonparametric
√
N -

consistent and efficient estimator for the LATE with confounding covariates. More recently, Belloni

et al. (2017) present an efficient estimator alongside reliable confidence bands for the LATE with

nonparametric/high-dimensional components, using the orthogonal moment condition and machine-

learning method. Chernozhukov et al. (2018b) incorporate their proposed DML method into the LATE

framework, achieving an
√
N -consistent estimator for the LATE in the presence of high-dimensional

covariates. Angrist (2022) underscores the importance of the LATE framework for causal inferences

through empirical demonstrations.

In this paper, our focus is on the LATE as our target parameter. To the best of our knowledge,

this paper is the first to propose a method specifically for the LATE in the context of high-dimensional

2We refer readers to Pfanzagl and Wefelmeyer (1985), Bickel et al. (1993), Newey (1994), and Tsiatis (2006) for the

development of the Neyman orthogonal score.
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covariates, without imposing assumptions regarding identification strength.

1.2 Outline

The rest of the paper is structured as follows. In Section 2, a practice guideline of the proposed method

and algorithm is given. In Section 3, we present the theoretical results. In Section 4, we showcase our

Monte Carlo simulation results. In Section 5, two empirical illustrations are given. We conclude in

Section 6. The appendix includes all proofs of the theorems and lemmas.

2 Overview

In this section, we provide a brief overview of our proposed method without theories. This overview

serves as a concise guideline in practice. In Section 3, we will formally introduce the theoretical

rationale for our method.

2.1 Notation

Consider the standard IV setup wherein the researcher has access to a dataset of N i.i.d. observations,

represented as {Wi = (Yi, Di, Zi, X
′
i)}Ni=1. The outcome of interest for unit i is denoted by Yi. Let

Di ∈ {0, 1} be a binary indicator of the receipt of treatment for unit i. Xi is a vector of p-dimensional

controls. Notably, the dimensionality p can be substantially greater than the available sample size, N .

The instrument variable Zi is also binary and can be interpreted, for example, as the offer of treatment.

This instrument is randomly assigned conditional on the covariates. To simplify our discussion in this

section, we adopt a binary representation for scalar D and scalar Z. However, it is crucial to highlight

that our framework can be extended to encompass broader contexts, including scenarios with ordered

treatments like years of schooling, or when dealing with vectors for both D and Z as encountered in

general IV estimation.

Let {PN}N denote a sequence of probability laws associated with {Wi}i. As the sample size N

grows, our analysis allows for an increasing dimensionality of Wi. Here, P = PN ∈ PN is defined with

respect to a specific sample size N , and EP stands for the expected value under the law P . For any

set B, its complement set is given by Bc = {1, · · · , N} \B, and |B| represents the size or cardinality
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of B. We introduce the subsample expectation operator defined as EB[·] := 1
|B|
∑

i∈B[·].

2.2 Anderson-Rubin-Type Neyman Orthogonal Score

We model the random vector W = (Y,D,Z,X ′)′ as:

D = m0(Z,X) + v, EP [v|Z,X] = 0, (First stage) (2.1)

Y = g0(Z,X) + u, EP [u|Z,X] = 0, (Reduced form) (2.2)

Z = p0(X) + e, EP [e|X] = 0, (Propensity score) (2.3)

where m0 is a function that maps the support of (Z,X) to (ε, 1 − ε), g0 is a function that maps the

support of (Z,X) to R, p0 is a function that maps the support of X to (ε, 1− ε) for some ε ∈ (0, 1/2),

and v, u, e are error terms. We do not impose any parametric assumptions3 on the form of the m0,

g0, and p0 functions here.

The LATE proposed by Tan (2006)4 is given by

LATE =
EP [g0(1, X)− g0(0, X)] + EP

[
Z(Y−g0(1,X))

p0(X)

]
− EP

[
(1−Z)(Y−g0(0,X))

1−p0(X)

]
EP [m0(1, X)−m0(0, X)] + EP

[
Z(D−m0(1,X))

p0(X)

]
− EP

[
(1−Z)(D−m0(0,X))

1−p0(X)

] , (2.4)

where the numerator is the intent-to-treat (ITT) effect, while the denominator denotes the compliance

probability, capturing the share of compliers in the study. The standard normal distribution of the

LATE estimator can be derived using the delta method, which linearizes the LATE estimator with

respect to the estimators of the numerator and denominator in equation (2.4). In line with the weak

IV literature, we model weak identification by allowing the denominator to approach zero, indicative

of a scenario with a small share of the compliers. Notably, in Section 3, we also accommodate

scenarios where the denominator is exactly zero, corresponding to a completely unidentified case. In

such instances, the standard normal approximation fails in the weak identification setting because the

3Blandhol et al. (2022) demonstrate that 2SLS specifications can only have a LATE interpretation when controlling

for “rich” covariates in a nonparametric manner.
4This LATE estimand, termed doubly robust LATE in Tan (2006), is robust against the misspecification of either

propensity score or the outcome regression model. The Neyman orthogonal score ψ in (2.5) coincides with the double

robust score in the context of LATE. However, in this paper, we only focus on Neyman orthogonal property, excluding

double robustness exploration.
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LATE estimator is highly nonlinear with respect to the denominator estimator as it approaches to zero.

To establish valid hypothesis tests and confidence sets for LATE without considering identification

strength, we consider the function ψ defined by

ψ(W ; θ, η) = g(1, X)− g(0, X) +
Z(Y − g(1, X))

p(X)
− (1− Z)(Y − g(0, X))

1− p(X)
(2.5)

− θ ×
(
m(1, X)−m(0, X) +

Z(D −m(1, X))

p(X)
− (1− Z)(D −m(0, X))

1− p(X)

)
,

where W = (Y,D,Z,X ′)′, θ ∈ Θ is the our target parameter LATE, with Θ being a compact set

on R, and η = (g,m, p) ∈ T 5 are the nuisance parameters. As we delve deeper in Section 3.1, we

will demonstrate that the function ψ adheres to the Neyman Orthogonality condition. It is pivotal

to note that the score ψ satisfies the moment condition EP [ψ(W ; θ0, η0)] = 0, where θ0 and η0 are

the true values of θ and η, respectively. With these properties, we can describe the function ψ as an

Anderson-Rubin-type (AR-type) Neyman orthogonal score function for the model (2.1)-(2.3).

2.3 Inference Procedure

We next introduce how to make inferences about the target parameter θ, in practice. Our interest

lies in testing that θ0 belongs to the identified set 6 ΘI , with ΘI ⊂ Θ. This is equivalent to testing

H0 : SN (θ) = 0 for all θ ∈ ΘI with SN (·) = EP [N−1/2
∑N

i=1 ψ(Wi; ·, η0)]. A notable advantage of the

null hypothesis is that it absolves us from making any assumption on identification of the parameter

θ. A comprehensive discussion regarding SN (·) will be presented in Section 3.

Initially, we estimate the first-stage nuisance parameters η, using some machine-learning methods.

With a fixed positive integer K > 1, we randomly partition {1, · · · , N} into K parts, denoted as

{Ik}Kk=1. For each k ∈ {1, · · · ,K}, the nuisance parameter estimate η̂k is computed using the subsam-

ple of those observations with index i ∈ Ick. Subsequently, we employ the cross-fitting/ data-splitting

method, as suggested by Chernozhukov et al. (2018a), to compute the covariance estimator of the

5T is assumed to be a convex set because we want to ensure that ψ(W ; θ0, η0 + r(η− η0)) is well defined. Given that

T is convex, η0 + r(η − η0) = (1− r)η0 + rη ∈ T for all r ∈ [0, 1) and η ∈ T .
6Identification hinges on whether the moment condition EP [ψ(W ; θ0, η0)] = 0 are satisfied uniquely. θ is considered

strongly identified at θ0 if θ = θ0 is a unique solution to EP [ψ(W ; θ, η)] = 0 for θ ∈ Θ. Conversely, θ is deemed completely

unidentified at θ0 when EP [ψ(W ; θ, η)] = 0 holds true all θ ∈ Θ. For the intermediate scenario, wherein θ is weakly

identified, it implies that EP [ψ(W ; θ, η)] = 0 when θ belongs to the identified set ΘI .
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process
√
Nψ(Wi; ·, η0), which is expressed as

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− 1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′), (2.6)

for θ1, θ2 ∈ Θ. Observe that Ω̂(θ1, θ2) is computed using the sample of observations with index i ∈ Ik

and this computation is repeated K times. Following this procedure, we take random draws from the

normal distribution, represented as ξθ0 ∼ N(0, Ω̂(θ0, θ0)) under the null hypothesis. Given h = hN (θ),

we then compute a conditional test statistic R(ξ, h, Ω̂) under the null, where

R(ξθ0 , h, Ω̂) = ξ2
θ0Ω̂(θ0, θ0)−1 − inf

θ

{(
Ω̂(θ, θ0)Ω̂(θ0, θ0)−1ξθ0 + h

)2
Ω̂(θ, θ)−1

}
, and (2.7)

hN (θ) = q̂N (θ)− Ω̂(θ, θ0)Ω̂(θ0, θ0)−1q̂N (θ0), (2.8)

with q̂N (θ) = 1√
N

∑K
k=1

∑
i∈Ik ψ(Wi; θ, η̂k). After that, the conditional critical value cα(h̃, Ω̂, θ0) with

the level of significance α, is defined as

cα(h̃, Ω̂, θ0) = min{c : P (R(ξθ0 , hN (θ), Ω̂) > c|hN = h̃) ≤ α}. (2.9)

Note that, for any given realization of hN (·), the critical value cα(·, Ω̂, θ0) can be readily computed.

We specifically examine a logit model class wherein a binary outcome Di, denoting an individual i’s

receipt of treatment, is determined by the treatment offer, Zi, and a set of p-dimensional covariates, Xi.

Moreover, we employ the logit model to estimate the propensity score and conduct linear regression

analysis to estimate the outcome regression. The models can be expressed as:

EP [Di|Zi, Xi] = Λ(Ziβ
0
11 +X ′iβ

0
12),

EP [Zi|Xi] = Λ(X ′iγ
0),

EP [Yi|Zi, Xi] = Ziβ
0
21 +X ′iβ

0
22,

where Λ denotes the logistic CDF defined by Λ(t) = exp(t)/(1 + exp(t)) for all t ∈ R, and the true

nuisance parameters vector η0 = (β0
11, β

0
12, β

0
21, β

0
22, γ

0). The log-likelihood functions for the logit

model are L1(β11, β12) = EN [L1(Wi;β11, β12)] and L2(γ) = EN [L2(Wi; γ)], where L1(Wi;β11, β12) =

Di(Ziβ11 + X ′iβ12) − log(1 + exp(Ziβ11 + X ′iβ12)) and L2(Wi; γ) = ZiX
′
iγ − log(1 + exp(X ′iγ)). The

AR-type Neyman orthogonal score is then specified as

ψ(Wi; θ, η) = β21 +
Zi(Yi − β21 −X ′

iβ22)

Λ(X ′
iγ)

− (1− Zi)(Yi −X ′
iβ22)

1− Λ(X ′
iγ)

(2.10)

− θ ×
[
Λ(β11 +X ′

iβ12)− Λ(X ′
iβ12) +

Zi(Di − Λ(β11 +X ′
iβ12))

Λ(X ′
iγ)

− (1− Zi)(Di − Λ(X ′
iβ12))

1− Λ(X ′
iγ)

]
.
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It is imperative to note that within the score function, the logit model can be easily replaced by other

models, such as the probit model or linear regression. For a comprehensive understanding, we outline

a specific inference procedure in the subsequent algorithm. Although our algorithm primarily employs

lasso for illustration, other machine-learning methods can be used as a substitute for lasso. Let us

assume that we have some generic penalty tuning parameter λ1, λ2, and λ3. Formal and theoretical

justified choices of these items are elaborated in Lemmas 2 and 3 in Appendix A.

Algorithm 1. (K-fold DML for high-dimensional LATE with Lasso)

Step 1. Randomly split the sample with size N into K folds {Ik}Kk=1.

Step 2. For each k ∈ {1, · · · ,K}, obtain the nuisance parameter estimates by lasso:

(a) obtain a lasso logistic estimates (β̂11,k, β̂12,k) of the nuisance parameters in the first-stage regression

by using only the subsample of observations with indices i ∈ {1, · · · , N} \ Ik,

(β̂11,k, β̂12,k) ∈ arg min
β11,β12

EIck [L1(Wi;β11, β12)] +
λ1

|Ick|
‖(β11, β12)‖1.

(b) obtain a lasso logistic estimate γ̂k of the nuisance parameters in the propensity score model by

using only the subsample of observations with indices i ∈ {1, · · · , N} \ Ik,

γ̂k ∈ arg min
γ

EIck [L2(Wi; γ)] +
λ2

|Ick|
‖γ‖1.

(c) obtain a lasso OLS estimates (β̂21,k, β̂22,k) of the nuisance parameters in the reduced form regres-

sion by using only the subsample of observations with indices i ∈ {1, · · · , N} \ Ik,

(β̂21,k, β̂22,k) ∈ arg min
β21,β22

EIck [(Yi − Ziβ21 −X ′iβ22)2] +
λ3

|Ick|
‖(β21, β22)‖1.

Step 3. Compute Ω̂(θ0, θ0) where Ω̂ is defined in equation (2.6) with η̂k = (β̂11,k, β̂12,k, β̂21,k, β̂22,k, γ̂k)

and ψ(W ; θ, η) is defined in equation (2.10).

Step 4. We take independent draws ξ∗θ0 ∼ N(0, Ω̂(θ0, θ0)) and calculate R(ξ∗θ0 , hN , Ω̂) by the definition

in equation (2.7), which represents a random draw from the conditional distribution of R given hN

under the null.

Step 5. Given the critical value defined in equation (2.9), we reject the null hypothesis H0 : SN (θ0) = 0

if R(ξ∗θ0 , hN (θ), Ω̂) exceeds the (1− α) quantiles cα(hN , Ω̂, θ0). We then report the (1− α) confidence
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interval CIα as CIα = {θ : R(ξ∗θ0 , hN (θ), Ω̂) ≤ cα(hN , Ω̂, θ0)}.

Remark 2.1. Andrews and Mikusheva (2016) develop a conditional inference approach for moment

condition models that does not rely on any assumptions about identification. Their proposed conditional

quasi-likelihood ratio (QLR) tests, aligned with the statistics in equation (2.7), maintain uniformly

correct size across a wide range of models. However, their test statistic might not be suitable for certain

high-dimensional research designs, such as the LATE model with rich covariates. To fill the gap, we

employ machine-learning techniques to manage the high-dimensional covariates in potential models,

and specify the score in Andrews and Mikusheva (2016) as our AR-type Neyman orthogonal score.

To the best of our knowledge, our approach is the first to offer inference for the LATE model with

high-dimensional covariates, without imposing any assumptions about the strength of identification.

Furthermore, our method can be seamlessly extended to enable inferences for other high-dimensional

models, without relying on any point identification assumption.

3 Theory

3.1 Definition of the High-dimensional QLR Test

In this section, we delineate our proposed high-dimensional QLR test. We start by formulating the

AR-type score ψ(W ; θ, η) that satisfies the moment restriction,

EP [ψ(W ; θ0, η0)] = 0, (3.1)

where θ0 and η0 denote the true values of the target parameter θ and the nuisance parameter η,

respectively. Notably, the nuisance parameter η may be finite-, high-, or infinite-dimensional.

Let us define the Gateaux derivative as Dr[η−η0] := ∂r{EP [ψ(W ; θ0, η0 +r(η−η0))]} for r ∈ [0, 1).

The score ψ meets the Neyman orthogonality condition if its pathwise derivative Dr[η− η0] exists for

all r ∈ [0, 1) and η ∈ TN , where TN is a nuisance realization set with TN ⊂ T , and the Gateaux

derivative with respect to η vanishes when evaluated at the true parameter values:

∂ηEPψ(W ; θ0, η0)[η − η0] = 0, (3.2)
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for all η ∈ TN . The Neyman orthogonality condition in (3.2) ensures that the moment condition

EP [ψ(W ; θ0, η0)] = 0 remains insensitive to local perturbations of η in a neighborhood of η0. It is

worth noting that the AR-type LATE score, as given in equation (2.5), satisfies both the moment

condition (3.1) and the Neyman orthogonality condition (3.2). Neyman orthogonality condition has

a long history in statistics and econometrics.7

Consider the term qN (θ) defined as qN (θ) = N−1/2
∑N

i=1 ψ(Wi; θ, η0) and let SN (·) denote its

expected value, given as SN (·) = EP [qN (·)]. Regardless of the identification status of the parameter

θ, our initial hypothesis θ ∈ ΘI can be recast in terms of testing SN (θ) = 0 for any θ ∈ ΘI . In this

context, SN (·) serves as a nuisance function8. Define SN as the collection of potential functions SN (·)

emerging from our model, and S0 as its subset comprising functions SN (·) that fulfill SN (θ) = 0.

Therefore, SN (θ) = 0 for any θ ∈ ΘI implies our new null hypothesis H ′0 : SN ∈ S0, which we refer to

from now on as our null hypothesis.

Remark 3.1. We can view the mean function SN (·) as an unknown parameter, potentially of infinite

dimension. The true target parameter θ0 is associated with a zero of this unknown function SN .

Consequently, any hypothesis about θ0 can be viewed as a composite hypothesis paired with an infinite-

dimensional nuisance function —specifically, the value of the mean function for all value θ 6= θ0.

We can sidestep imposing restrictive identification assumptions by considering the mean function as

a parameter. In the context of this infinite-dimensional parameter, we derive inference based on the

observation of an infinite-dimensional object, namely the stochastic process GN , which is defined in the

following equation (3.3) and arises from the sample moment function evaluated at different θ values.

With these notations, we now define an empirical process GN (·) as

GN (·) = qN (·)− SN (·) =
1√
N

N∑
i=1

{ψ(Wi; ·, η0)− EP [ψ(W ; ·, η0)]} . (3.3)

In Section 3.2, we demonstrate that under mild conditions, the process GN (·) weakly converges to

G(·) as N → ∞ over the family P0 of distributions consistent with the null SN ∈ S0. Here, G(·) is

7Newey (1990,1994), Andrews (1994), Robins and Rotnitzky (1995), Linton (1996) study the applications of the

Neyman-orthogonal condition in semiparametric models.
8To clarify, in our paper, “nuisance parameter” and “nuisance function” are two distinct terms. The “nuisance

parameter” refers to η = (g,m, p) in our paper, while the “nuisance function” corresponds to the unknown function

SN (·) for θ 6= θ0, which may be infinite-dimensional .
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a mean-zero Gaussian process with a covariance function defined by Ω(θ1, θ2) = EP [G(θ1)G(θ2)]. We

now consider the process

hN (θ) = qN (θ)− Ω̂(θ, θ0)Ω̂(θ0, θ0)−1qN (θ0), (3.4)

where Ω̂(·, ·) is a consistent estimator of Ω(·, ·). By rearranging equation (3.4), we have

qN (θ) = hN (θ) + Ω̂(θ, θ0)Ω̂(θ0, θ0)−1qN (θ0). (3.5)

Observe that the process qN (·) can be decomposed into two random components: the process hN (·)

and qN (θ0). Given that the distribution of qN (θ0) adheres to N(0,Ω(θ0, θ0)) and is independent of

the nuisance function SN , the conditional distribution of any function of qN (·), given hN (·) under

the null hypothesis, remains independent of SN . To test the null hypothesis SN ∈ S0, one can use

any conditional statistic R = R(qN (θ),Ω) given hN (θ). Importantly, the conditional distribution of

the statistic R(qN (·),Ω) given hN (·) does not depend on SN (·). As such, this approach is suitable

for both strongly and weakly identified scenarios since it does not require any assumption about

identification strength. The test statistic R resembles the conditional QLR test statistic introduced

by Andrews and Mikusheva (2016). However, their work does not encompass the nuisance parameter

estimation process or models enriched with high-dimensional covariates. Instead, their framework

directly require a consistent nuisance parameter estimator η̂. In our paper, we specify the score in

Andrews and Mikusheva (2016) as the AR-type Neyman orthogonal score in equation (2.10).

In light of the non-applicability of the conditional QLR test in the high-dimensional model, we

now propose a novel test, termed high-dimensional QLR test, employing the DML method. After

estimating the nuisance parameters η̂k using lasso with observations indexed by i ∈ {1, · · · , N} \ Ik,

we compute certain transformations of the score using observations indexed by i ∈ Ik. In the rest

of this section, we detail several estimators and the confidence interval tailored for high-dimensional

LATE.

Remark 3.2. The sample splitting step, while seemingly reducing precision by only involving portions

of the data in the estimation step, is essential to our approach. It ensures independence between the

nuisance-parameter-estimation step and the rest of the steps. As depicted in Figure 2 of Chernozhukov

et al. (2018a), the absence of sample splitting can result in the estimator suffering from significant
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bias. This bias primarily originates from overfitting (with only a minor portion of the bias arising from

regularization bias), where models inadvertently capture noise instead of true patterns. The problem

becomes more pronounced when the sample data is used for both model selection and estimation. Cross-

fitting serves as an effective countermeasure to this overfitting issue. Chernozhukov et al. (2018a) term

the blend of cross-fitting with Neyman orthogonal scores as DML.

We propose an estimator for GN (θ) as

ĜN (θ) =
√
N

 1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k)− EP [ψ(Wi; θ, η̂k)]

 . (3.6)

Note that ĜN (θ) is computed using the subsample of those observations indexed by i ∈ Ik. This compu-

tation is repeatedK times. An estimator of qN (θ) is defined as q̂N (θ) = N−1/2
∑K

k=1

∑
i∈Ik ψ(Wi; θ, η̂k).

We propose a uniformly consistent estimator of Ω(θ1, θ2) for all P ∈ P0 as

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− 1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′). (3.7)

Subsequently, we propose a test statistic R(ξθ0 , hN (θ), Ω̂)9, where

R(ξθ0 , hN (θ), Ω̂) = ξ2
θ0Ω̂(θ0, θ0)−1 − inf

θ

{(
Ω̂(θ, θ0)Ω̂(θ0, θ0)−1ξθ0 + hN (θ)

)2
Ω(θ, θ)−1

}
, (3.8)

with ξθ0 ∼ N(0, Ω̂(θ0, θ0)).

Remark 3.3. The conventional quasi-likelihood ratio statistic, represented as QLR = qN (θ0)′Ω̂(θ0, θ0)−1

· qN (θ0) − infθ
{
qN (θ)′Ω̂(θ, θ)−1qN (θ)

}
, has a limitation: it relies on the unknown nuisance function

SN (·) in complex ways, with exceptions in special situations like strong identification assumptions.

However, through conditional testing, it is evident that hN (θ) is a sufficient statistic for the unknown

function SN (·) under the null SN ∈ S0. This is because qN can be separated into two independent

random components–the process hN (·) and the random variable qN (θ0) under the null, which is not

influenced by the nuisance parameter SN (·).
9As mentioned in Moreira (2003), this statistic simplifies to the pivotal Anderson-Rubin statistic when the dimen-

sionality of the instrument is 1, consistent with our current assumption. Nevertheless, we find it pertinent to introduce

this conditional test statistic here. This is in light of our aspiration to delve into general TSLS estimation in upcoming

research, particularly overidentified case, which are commonly observed in empirical studies.
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Then we define the conditional critical value cα(h̃, Ω̂, θ0) with a significance level α as cα(h̃, Ω̂, θ0) =

min{c : P (R(ξθ0 , hN (θ), Ω̂) > c|hN = h̃) ≤ α}. Subsequently, the (1 − α) confidence interval can be

constructed as CIα = {θ : R(ξθ0 , hN (θ), Ω̂) ≤ cα(h, Ω̂, θ0)}.

3.2 General Asymptotic Behavior of the High-dimensional QLR Test

In this subsection, we provide the general theoretical foundation. While our main theory draws

inspiration from Chernozhukov et al. (2018a), we present a broader and more generalized theoretical

result. They employ DML to achieve a
√
N -consistent estimator for θ. In contrast to the convergence

in distribution result of the target paraemter estimator θ̂ presented in Chernozhukov et al. (2018a),

we demonstrate the weak convergence result of our proposed empirical process under the null. We

show that our test has uniformly correct asymptotic size.

To streamline our discussion, we first standardize some notations. For any finite-dimensional vector

δ, we define the l1-norm by ‖δ‖1, l2-norm by ‖δ‖, l∞-norm by ‖δ‖∞, and l0-seminorm by ‖δ‖0, which

represents the number of non-zero components of δ. We define the sample expectation operator as

EN [·] = 1
N

∑N
i=1[·]. The prediction norm of δ is given by ‖x′ijδ‖2,N =

√
EN [(x′ijδ)

2]. For any matrix A,

‖A‖ denotes the `2-norm of the matrix. Let c0 > 0, c1 > 0, q ≥ 4 be some finite constants with c0 ≤ c1.

Let K ≥ 2 be a fixed integer. The sequence {δN}N≥1 consists of positive constants approaching 0,

with the condition that δN ≥ N−1/2. The sequences {aN}N≥1, {vN}N≥1, and {KN}N≥1 are defined

as sets of positive constants, possibly growing to infinity, with vN ≥ 1 for all N ≥ 1. We use a . b to

denote a ≤ cb for some c > 0 that does not depend on N .

We focus on the cases with linear Neyman orthogonal score ψ of the form

ψ(w; θ, η) = ψa(w; η)θ + ψb(w; η), for all w ∈ supp(W ). (3.9)

Recall that θ ∈ Θ, a compact set in R, and η ∈ T for a convex set T . Recall that the probability law

P = PN ∈ PN is associated with Wi with a specific sample size N . The null hypothesis corresponds to

the probability family P0 of distribution. We formulate our assumptions based on bounded Lipschitz

convergence. For an understanding of the equivalence between bounded Lipschitz convergence and

weak convergence of stochastic processes, see Section 1.12 of van der Vaart and Wellner (1996). With

these notations, we now present the following two assumptions.
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Assumption 1. For N ≥ 3 and P ∈ PN , the following conditions hold.

(i) The true parameter θ0 satisfies equation (3.1).

(ii) The map η 7→ EP [ψ(W ; θ, η)] is twice continuously Gateaux-differentiable on the realization set

TN .

(iii) ψ satisfies the Neyman orthogonality condition represented in (3.2).

(iv) The score ψ is linear as characterized by (3.9).

(v) Θ is a compact set.

(vi) ψ(W ; θ, η) is continuous with respect to θ.

(vii) {Wi}Ni=1 is independent and identically distributed (i.i.d).

Assumption 2. For N ≥ 3 and P ∈ P0, the following conditions hold.

(i) Given a random subset I of {1, · · · , N} with size n = N/K, the nuisance parameter estimator

η̂ = η̂ ((Wi)i∈Ic) belongs to the realization set TN with probability at least ∆N , where TN contains

η0 and satisfies the following conditions.

(ii) The following conditions on the rates mN ,m
′
N , r

′
N hold over P ∈ P0:

(a) mN := sup
η∈TN

(EP [|ψ(W ; θ, η)|q])1/q ≤ c1,

(b) m′N := sup
η∈TN

(EP [|ψa(W ; η)|q])1/q ≤ c1,

(c) r′N := sup
η∈TN

(EP [(ψ(W ; θ, η)− ψ(W ; θ, η0))2])1/2 ≤ δN .

(iii) EP [ψ(W ; θ, η0)2] ≥ c0.

Remark 3.4. Assumptions 1, 2 are related to Assumptions 3.1, 3.2 in Chernozhukov et al. (2018a).

It is crucial to highlight that Assumption 3.1 (e) in Chernozhukov et al. (2018a) serves as the identifi-

cation condition in their paper, ensuring that the denominator in the LATE is bounded from below by

a positive constant. Contrarily, in our paper, we intentionally remove this assumption to accommodate

the weak identification issue, allowing for the possibility of a zero denominator. This corresponds to a
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completely unidentified scenario. To derive the uniform convergence of the Gaussian process ĜN , we

impose restrictions over P ∈ P0 in Assumption 2 (ii)-(iii).

Assumption 1 stipulates that the score satisfies the moment condition, Neyman orthogonality

condition, and a mild smoothness condition. Assumption 1 (v)(vi) guarantees the compactness of the

identified set ΘI . Assumption 2 introduces some mild regularity conditions. Assumption 2(i) and (ii)

assert that the estimator of the nuisance parameter η̂ belongs to a shrinking neighbourhood of the

true nuisance parameter η0 and contracts around η0 at a rate of r′N over P ∈ P0. Assumption 2 (iii)

ensures a non-degenerate limit distribution. While these conditions are high-level, we will provide

more specific low-level conditions in the context of LATE in section 3.3.

Theorem 1. Suppose Assumptions 1 and 2 hold. We have

ĜN (θ) = GN (θ) +OP (N−1/2r′N ), (3.10)

where recall that

GN (θ) =
1√
N

N∑
i=1

{ψ(Wi; θ, η0)− EP [ψ(W ; θ, η0)]} , and

ĜN (θ) =
1√
N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k)−
√
NEP [ψ(Wi; θ, η̂k)] .

The process ĜN (·) weakly converges to a centered Gaussian process G(·) for all P ∈ P0 with covariance

function Ω(θ1, θ2) = EP [(ψ(W ; θ1, η0)− EP [ψ(W ; θ1, η0)]) (ψ(W ; θ2, η0)−EP [ψ(W ; θ2, η0)])] as N goes

to infinity. Moreover, there is a uniformly consistent variance estimator Ω̂(·, ·) for all P ∈ P0 in the

form of

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)−
1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′),

and for any ε > 0,

lim
N→∞

sup
P∈P0

P
{

sup
θ1,θ2

‖Ω̂(θ1, θ2)− Ω(θ1, θ2)‖ > ε
}

= 0.

Proof. See Appendix B.1.
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Remark 3.5. Theorem 1 serves as an extension of Chernozhukov et al. (2018a). In their work, they

introduce the pointwise convergence of the target parameter estimator θ̂, and discuss the variance es-

timator associated with the DML estimator θ̂. Our contribution broadens their results. Specifically,

we demonstrate that our proposed empirical process exhibits uniform convergence towards a Gaus-

sian process across a broad class of models. Notably, these models do not impose restriction on the

identification strength, encompassing a wide range of identification scenarios. Moreover, our variance

estimator Ω̂(θ1, θ2) stands for a uniformly consistent estimator for Ω(θ1, θ2) under the null. Crucially,

the weak convergence result enables us to handle the weak identification challenges effectively.

3.3 Lower-level Sufficient Conditions in the LATE framework

In this subsection, we provide lower-level sufficient conditions that guarantee the validity of Theorem 1

when applied to the LATE framework. Let us define TN(i) as the parameter space of the i-th parameter

in η = (η1, η2, η3) with i ∈ {1, 2, 3}. The sequence {sN}N≥1 be a set of positive integers greater than

1. Let q, c, C1 be some finite and positive constants with q > 4. Let aN = p ∨ N . The sequence

{MN}N≥1 be a set of positive constants such that MN ≥ (EP [(Zi ∨ ‖Xi‖∞)2q])1/2q. Let {∆N}N≥1 be

a sequence of positive constants that converges to zero. For any T ⊂ [p+1], δ = (δ1, · · · , δp+1)′ ∈ Rp+1

with δT,j = δj if j ∈ T and δT,j = 0 if j /∈ T . Define the minimum and maximum sparse eigenvalue by

φmin(m) = inf
‖δ‖0≤m

‖(Zi, X ′i)δ‖2,N
‖δT ‖1

, φmax(m) = sup
‖δ‖0≤m

‖(Zi, X ′i)δ‖2,N
‖δT ‖1

.

Assumption 3. (Regularity conditions for LATE) For P ∈ PN , the following conditions hold.

(i) Equations (2.1)-(2.3) are satisfied with a binary D and Z10.

(ii) ‖Y ‖P,q ≤ c1.

(iii) For some ε > 0, ε ≤ P (Z = 1|X) ≤ 1− ε almost surely.

(iv) ‖u‖P,2 ≥ c0.

(v) ‖EP [u2|X]‖P,∞ ≤ c1.

10While we assume a binary D and Z in the current LATE framework, our theoretical results can be extended to allow

for D to be an ordered treatment, with both Z and X being vectors.
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(vi) Θ is compact.

(vii) EP [D|Z = 1, X] ≥ EP [D|Z = 0, X].

Remark 3.6. Chernozhukov et al. (2018a) also adapt their results for the LATE framework and

provide regularity conditions for LATE estimation. However, their Assumption 5.2 (d) imposes that

the denominator must be bounded from below by a positive number. This condition prevents their

method from handling weakly identified or unidentified situations. In contrast, our approach does not

necessitate a strictly positive denominator for LATE. Furthermore, our Assumption 3 (vii) relaxes the

“local-to-zero” assumption. We allow for EP [D|Z = 1, X] − EP [D|Z = 0, X] to converge to, or even

equal zero, thereby encompassing weakly identified or unidentified cases.

Assumption 3 establishes specific low-level conditions tailored for the LATE framework. Assump-

tion 3 (i) asserts that both the treatment and the instrument are binary. Equations (2.1) and (2.2)

play a pivotal role in establishing the Instrument Independence condition. This ensures that, given the

covariates X, the joint distribution of the outcome Y and the endogenous variable D remains indepen-

dent of Z. This implies that the instrument Z is “as good as randomly assigned” once conditioned on

X. Equation (2.3) enforces the Exclusion Restriction condition, which stipulates that any variations

in the instrument Z solely influence potential outcomes through its impact on D. Assumption 3 (ii)

requires the lq-norm of the outcome variable is bounded. Assumption 3 (iii) is a standard overlap

condition, indicating that for every value of the covariates X, there is a non-zero probability that

a unit will either be treated or remain untreated. Assumption 3 (iv) and (v) impose constrains on

the error term u of the reduce form as in equation (2.2). Specifically, Assumption 3 (iv) sets a lower

bound on the l2-norm of u, while (v) restricts the upper bound of the uniform norm of u. Notably,

(vii) ensures the adaptability of our proposed method even in weakly or unidentified scenarios.

Next, we impose the following conditions to guarantee the convergence rate of the nuisance parame-

ter estimators. Recall that the true nuisance parameter vector is denoted as η0 = (β0
11, β

0
12, β

0
21, β

0
22, γ

0).

Assumption 4. (Sparse eigenvalue conditions) The sparse eigenvalue conditions hold with probability

1− o(1), namely, for some lN →∞ slow enough, we have

1 . φmin(lNsN ) ≤ φmax(lNsN ) . 1.
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Assumption 5. (Sparsity) ‖β0
12‖0 + ‖β0

22‖0 + ‖γ0‖0 ≤ sN .

Assumption 6. (Parameters) ‖β0
12‖+ ‖β0

22‖+ ‖γ0‖ ≤ C1.

Assumption 7. (Covariates) For q > 4, the following conditions hold:

(i) inf‖ξ‖=1 EP [((Zi, X
′
i)ξ)

2] ≥ c.

(ii) sup‖ξ‖=1 EP [((Zi, X
′
i)ξ)

2] ≤ C1.

(iii) N−1/2+2/qM2
NsN log2 aN ≤ ∆N .

Assumption 4 is the sparse eigenvalue condition, analogous to Assumption RE in Bickel et al.

(2009). Assumption 5 stipulates the number of non-zero components in the high-dimensional nuisance

parameter vector by sN , which in introduced in Assumption 7 (iii). Assumption 6 requires the l2-norms

of the true nuisance parameter vector β2
12, β0

22, and γ0 are bounded, which is a standard condition.

Assumption 7 (i) mandates a minimum bound for the second moment of the covariates. Assumption

7 (ii) imposes the second moment of the covariates to be bounded in a uniform manner. Assumption

7 (iii) sets one constraint on the rate that the sparsity index sN , the bound of 2q-th moment MN of

the covariates , and the dimensionality aN .

These conditions are sufficient for the high-level conditions invoked in Theorem 1, as formally

stated in the following lemma.

Lemma 1. Suppose Assumptions 3-7 hold. Then Assumptions 1 and 2 hold for the Neyman orthogonal

score function ψ(W ; θ, η) in equation (2.5) in the LATE framework.

Proof. See Appendix B.2.

Given Lemma 1 and Theorem 1, we derive Theorem 2, which concerns the weak convergence of

the Gaussian process ĜN (·) in the context of high dimensionality.

Theorem 2. Suppose Assumption 3-7 hold. With ψ(W ; θ, η) defined as equation (2.5), the process

ĜN (·) weakly converges to a centered Gaussian process G(·) uniformly for all P ∈ P0 with covari-

ance function Ω(θ1, θ2) = EP [(ψ(W ; θ1, η0) − EP [ψ(W ; θ1, η0)])(ψ(W ; θ2, η0) − EP [ψ(W ; θ2, η)]] as N
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goes to infinity. The covariance function estimator Ω̂(θ1, θ2) defined in (2.6) concentrates around the

covariance function Ω(θ1, θ2) uniformly for all P ∈ P0, in that for any ε > 0,

lim
N→∞

sup
P∈P0

P
(

sup
θ1,θ2

‖Ω̂(θ1, θ2)− Ω(θ1, θ2)‖ > ε
)

= 0.

Proof. See Appendix B.2.

Remark 3.7. In Theorem 2, we demonstrate that our variance estimator is a uniformly consistent

estimator of Ω(θ1, θ2) across all probability law P ∈ P0 . Next, we aim to show that our proposed high-

dimensional QLR test exhibits uniformly correct asymptotic size in the context of LATE, as formally

stated in the following theorem.

Theorem 3. Suppose that Assumptions 3-7 hold. The test that rejects the null hypothesis H0 : SN ∈ S0

when R(ξθ0 , hN , Ω̂) defined in equation (3.8) exceeds the (1−α) quantile cα(hN , Ω̂, θ0) of its conditional

distribution given hN (·) has uniformly correct asymptotic size. Under the null, we have

lim
N→∞

sup
P∈P0

P (R(ξθ0 , hN , Ω̂) > cα(hN , Ω̂, θ0)) = α.

Proof. See Appendix B.3.

4 Simulation Studies

4.1 Simulation Setup

Consider the threshold crossing model representation as proposed by Vytlacil (2002). We generate

data with a sample size N = 500. The high-dimensional covariates X are constructed as follows:

Xi ∼ N


0,



U0 U1 · · · Udim(X)−2 Udim(X)−1

U1 U0 · · · Udim(X)−3 Udim(X)−2

...
...

. . .
...

...

Udim(X)−2 Udim(X)−3 · · · U0 U1

Udim(X)−1 Udim(X)−2 · · · U1 U0




,

with U = 0.5, and dim(X) = 5, 200, 400, and 600, respectively. Let δi ∼ N (0, 1) where δi represents

the latent tendency to receive treatment. We define Zi to be equal to 1 for a non-negative δi and 0
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otherwise. The potential treatment indicators Di(Zi) are then given by

Di(0) = 1{Φ(δi) < PAT }, Di(1) = 1{Φ(δi) < 1− PNT },

where Φ(·) denotes the CDF of a standard normal distribution, 1{·} represents the indicator function,

and PAT and PNT represent the share of always-takers and never-takers in the population, respectively.

The realized treatment Di is then defined by Di = Di(0)(1− Zi) +Di(1)Zi. The outcome variable is

generated by Yi = Di + Xi + εi, where εi draws from a standard normal distribution. In this setup,

the local average treatment effect is equal to 1 for all individuals, yielding θ0 = 1.

We consider three different strengths of identification. Firstly, we set (PAT , PNT ) = (0.25, 0.25) for

the strongly identified scenario, with the share of compliers being 0.5. Secondly, we set (PAT , PNT ) =

(0.45, 0.45) for the weakly identified scenario with the share of compliers being 0.1. Lastly, we set

(PAT , PNT ) = (0.49, 0.49) for the completely unidentified scenario with the share of compliers being

0.02. For cross-fitting, we set the number of folds to K = 3.

4.2 Results

We provide results from four distinct approaches in our study. The first is the conditional QLR test

(AM16) proposed by Andrews and Mikusheva (2016), which is robust against weak identification but

struggles with high dimensionality. The second and third are two conventional machine-learning (ML)

methods; specifically, the second one, labelled as CCDDHNR18, is the DML algorithm proposed by

Chernozhukov et al. (2018a). This method employs the same Neyman orthogonal score ψ(W ; θ, η) and

the cross-fitting technique as our proposed inference procedure, but with a distinct variance estimator

and inference methodology. Instead of using the inversion test based on conditional test statistics

to construct confidence intervals, CCDDHNR18 adopts the traditional t-test, making it not robust

against weak identifications. The third method, denoted as BCFH17, is derived from Belloni et al.

(2017). It removes the cross-fitting procedure from CCDDHNR18, while keeping the other steps the

same. The fourth and final approach is our proposed high-dimensional QLR method (HD-QLR), which

ensures robustness against both weak identification and high dimensionality. For the sake of simplicity

in notation, we reference these four approaches as AM16, CCDDHNR18, BCFH17, and HD-QLR.

Figures 1, 2 and 3 plot the power curves for the nominal 5% tests in the strongly identified,
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Figure 1: Power curves for HD-QLR (solid blue), AM16 (dash-dot black), BCFH17 (vertical marker

red), and CCDDHNR18 (dashed green). Power of nominal 5% tests in strongly identified LATE design

with the share of compliers being 0.5, and N = 500 observations. Based on 2,500 replications, and

for HD-QLR and AM16, 1,000 draws of conditional critical values were conducted. Upper left panel,

number of covariates dim(X) = 5 ; upper right panel, dim(X) = 200; lower left panel, dim(X) = 400;

lower right panel, dim(X) = 600.

weakly identified, and unidentified simulation designs, respectively. We conduct 2500 Monte Carlo

simulation iterations for strongly identified, weakly identified and unidentified settings, comparing the

power curves across the four approaches. We study four scenarios, each with a different number of

covariates, specifically dim(X)= 5, 200, 400, and 600.

Figure 1 depicts the strongly identified designs with the share of compliers being 0.5. The upper
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Figure 2: Power curves for HD-QLR (solid blue), AM16 (dash-dot black), BCFH17 (vertical marker

red), and CCDDHNR18 (dashed green). Power of nominal 5% tests in weakly identified LATE design

with the share of compliers being 0.1, and N = 500 observations. Based on 2,500 replications, and

for HD-QLR and AM16, 1,000 draws of conditional critical values were conducted. Upper left panel,

number of covariates dim(X) = 5 ; upper right panel, dim(X) = 200; lower left panel, dim(X) = 400;

lower right panel, dim(X) = 600.
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Figure 3: Power curves for HD-QLR (solid blue), AM16 (dash-dot black), BCFH17 (vertical marker

red), and CCDDHNR18 (dashed green). Power of nominal 5% tests in unidentified LATE design with

the share of compliers being 0.02, and N = 500 observations. Based on 2,500 replications, and for

HD-QLR and AM16, 1,000 draws of conditional critical values were conducted. Upper left panel,

number of covariates dim(X) = 5 ; upper right panel, dim(X) = 200; lower left panel, dim(X) = 400;

lower right panel, dim(X) = 600.
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left figure represents the power curves for the “low-dimensional” LATE framework with dim(X) = 5.

It is evident that all tests maintain satisfactory size control. In the remaining three figures, where

dim(X) =200, 400, and 600, our proposed method performs quite competitively with CCDDHNR18

and BCFH17, as all three methods are tailored for high-dimensional scenarios. While CCDDHNR18

and BCFH17 exhibit good power close to the null, their power slightly lags behind our proposed method

in more distant alternatives. In contrast, AM16 suffers from significant size distortion and substantial

power loss, revealing that the conditional QLR method is not robust against high dimensionality.

Figure 2 depicts the power curves within a weakly identified scenario where the share of compliers

is 0.1. In the “low-dimensional” LATE model, both our proposed method and AM16 adeptly con-

trol size. However, AM16 exhibits significantly superior power performance over our method, since

AM16 is specifically designed for models with low-dimensional nuisance parameters. Conversely, in

the remaining designs, our method outperforms AM16 in both size control and power performance,

highlighting the vulnerability of AM16 in high-dimensional contexts. Moreover, both CCDDHNR18

and BCFH17 face severe size distort and significant power loss across all designs, signaling their lack

of robustness to weak identification.

Figure 3 presents results for scenarios where identification is completely absent with the proportion

of compliers being 0.02. The patterns mirror those observed in weakly identified cases. Within the

“low-dimensional” LATE framework, my proposed method and AM16 maintain correct size control,

while the two machine-learning methods exhibit significant size distortion. For high-dimensional LATE

designs, my method surpasses the other three conventional approaches in size control. The primary

distinction between the unidentified and weakly identified scenarios is a notable reduction in power in

the former. Furthermore, by juxtaposing the upper-left plots of Figure 1, 2 and 3, it becomes clear

that our method adeptly maintains size control, not just in high-dimensional settings, but also in

low-dimensional scenarios.

In summarizing our observations, we confirm that the proposed method consistently exhibits ro-

bustness against both weak identification and high dimensionality. In contrast, while CCDDHNR18

and BCFH17 exhibit robustness to high-dimensional settings, they struggle when facing weak identi-

fication. Likewise, AM16 shows robustness to weak identification but lacks robustness to high dimen-

sionality.
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5 Empirical Illustrations

5.1 The Impact of Railroad Access on City Growth

To demonstrate the methods outlined in the preceding sections, we revisit the IV estimations by

Hornung (2015) concerning the impact of railroad access on city growth in 19th-century Prussia. In

this study, straight-line corridors between major cities (nodes) are constructed, and whether a city is

located on this line is used as an instrument for analysis. We compare our proposed high-dimensional

QLR test with three other conventional methods: AM16, CCDDHNR18, and BCFH17, to infer the

effect of railroad access. Our goal is to deepen our understanding of the conclusions presented in

the literature. By conducting a new empirical analysis, we keep two econometric considerations in

mind: 1. the inclusion of high-dimensional covariates to mitigate unobserved confoundedness, and

2. accounting for the weak identification issue in the data. For the first time, we report confidence

intervals that are robust to weak identification and high dimensionality.

Consider the empirical model:

Yit = Diθ0 +X ′iβ1 + εit,

Di =
exp(Ziη0 +X ′iβ2)

1 + exp(Ziη0 +X ′iβ2)
+ vi,

where Yit denotes the urban population growth rate in city i at time period t, Di is a dummy variable

indicating whether there is a railroad access by 1848 in city i, and Zi denotes whether the city i was

located within a straight-line corridor between junction stations (nodes) in 1848. The covariates Xi

include a lagged dependent variable, distance to the closest node of railroad lines, age composition,

primary education of the urban population, county-level concentration of large landholdings, access

to main roads, rivers, and ports, pre-railroad city growth from 1831-1837, and the size of the civilian

and military population in 1849.

Within this study, the exclusion restriction condition would be violated if the location of the cities

in the straight-line corridor is associated with urban population growth through a channel other than

the railroad. The author asserts that the exclusion restriction is satisfied in Hornung (2015, pg. 714),

When estimating the reduce-form relationship of urban growth on location in the straight-

line corridors, we find no correlation with the pre-railroad growth during 1831-1837.
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In the context of this study, it is noteworthy that the adoption of railroad technology by cities located

on a straight line between two important cities was randomly assigned. This random assignment

arises because the positioning of these cities along such lines was not intentionally controlled by any

specific entity. In 19th-century Prussia, the government did not dictate railroad construction due

to financial limitations. Instead, the decision fell to individual city councils negotiating with private

railroad enterprises. Hence, each city had the autonomy to determine whether or not to proceed with

railroad construction. Within this study, “compliers” refer to (1) cities situated on the straight line

between two major cities AND eventually established a railroad station, and (2) cities NOT on such

a line AND did NOT get a train station. The second part does not exist in this study as mentioned

in Hornung (2015, pg. 731),

One limitation of using IV estimation approaches lies in the fact that we can only

estimate the local average treatment effect of railroad access for cities in the straight-

line corridors.

We implement the proposed method on the city-level railroad data from Hornung (2015). As outlined

in Table 5 of Hornung (2015), the first-stage F-statistics vary between 26.46 and 38.29. This variation

suggests instrument weakness based on the tF critical value function proposed by Lee et al. (2022).

We conducted a re-analysis by incorporating the polynomial and interaction terms of the original

covariates, and present the results in Table 1. The sample spans from N = 898 cities with the

dimensionality of covariates dim(X) = 204, to N = 926 cities with dim(X) = 212.

Table 1 summarizes the results. To emphasize the efficiency of the proposed method within the

high-dimensional framework, we report the confidence intervals for the LATE estimates and the lengths

of the confidence intervals. Panel A showcases results derived from AM16, which is not tailored for

high-dimensional setting. Panel B details findings from CCDDHNR18, while Panel C displays results

from BCFH17. Panel D features results from the proposed method, with K = 4 folds for cross-

fitting. Different columns report the results for several dependent variables across diverse time periods.

Specifically, Columns (1) and (2) capture outcomes spanning two main periods: 1831-37 , and 1849-

1871. Columns (3)-(9) depict findings across seven subperiods. To mitigate the uncertainty induced

by sample splitting, we compute confidence intervals based on the average from ten randomized DML

iterations following Chernozhukov et al. (2018a).
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

Yit: population Main periods Subperiods

growth rate 1831-37 49-71 49-52 52-55 55-58 58-61 61-64 64-67 67-71

Panel A: AM16

CI [0.000, [0.024, [-0.015, [0.006, [0.030, [0.012, [0.021, [0.012, [0.018,

0.018] 0.135] 0.081] 0.039] 0.150] 0.111] 0.090] 0.420] 0.155]

length of CI 0.018 0.111 0.096 0.033 0.120 0.099 0.069 0.408 0.137

Panel B: CCDDHNR18

CI [-0.026, [-0.004, [-0.019, [-0.014, [-0.009, [-0.016, [-0.019, [-0.014, [-0.016,

0.021] 0.033] 0.039] 0.035] 0.044] 0.030] 0.052] 0.039] 0.036]

length of CI 0.047 0.037 0.058 0.048 0.053 0.046 0.070 0.052 0.052

Panel C: BCFH17

CI [-0.017, [-0.003, [-0.009, [-0.006, [-0.007, [-0.008, [-0.009, [-0.018, [-0.008,

0.017] 0.026] 0.026] 0.023] 0.031] 0.020] 0.040] 0.041] 0.034]

length of CI 0.034 0.029 0.035 0.029 0.038 0.028 0.049 0.059 0.042

Panel D: HD-QLR with the number of folds K=4

CI [-0.012, [0.005, [0.000, [0.002, [0.003, [-0.001, [0.003, [-0.004, [-0.002,

0.012] 0.020] 0.021] 0.018] 0.027] 0.016] 0.029] 0.032] 0.023]

length of CI 0.024 0.015 0.021 0.016 0.024 0.017 0.026 0.033 0.024

Size N 898 906 929 924 914 926 924 919 919

dim(X) 204 212 212 212 212 212 212 212 212

Table 1: Displayed are confidence intervals (CI) and the length of confidence intervals for the co-

efficient of the railroad access. Panel A displays the results of AM16. Panel B presents the results

obtained from CCDDHNR18. Panel C shows the results derived from BCFH17. Panel D showcases

the results of the proposed HD-QLR test with the number K = 4 folds for cross fitting. Estimation

and inference results in panel B and D are based on 10 iterations of resampled cross fitting.
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Yit: population Main periods Subperiods

growth rate 1831-37 49-71 49-52 52-55 55-58 58-61 61-64 64-67 67-71

Panel A: HD-QLR with the number of folds K=3

CI [-0.013, [0.005, [0.001, [0.002, [0.003, [-0.002, [0.003, [-0.005, [-0.003,

0.011] 0.021] 0.023] 0.030] 0.026] 0.016] 0.030] 0.032] 0.022]

length of CI 0.024 0.016 0.023 0.018 0.023 0.018 0.027 0.037 0.025

Panel B: HD-QLR with the number of folds K=4

CI [-0.012, [0.005, [0.000, [0.002, [0.003, [-0.001, [0.003, [-0.004, [-0.002,

0.012] 0.020] 0.021] 0.018] 0.027] 0.016] 0.029] 0.032] 0.023]

length of CI 0.024 0.015 0.021 0.016 0.024 0.017 0.026 0.033 0.024

Size N 898 906 929 924 914 926 924 919 919

dim(X) 204 212 212 212 212 212 212 212 212

Table 2: Displayed are CI and the length of CI for the coefficient of the railroad access. Panel A

showcases the results of the proposed HD-QLR test with the number K = 3 folds for cross fitting.

Panel B demonstrates the results of the proposed test with the number K = 4 folds for cross fitting.

Estimation and inference are based on 10 iterations of resampled cross fitting.
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Upon comparing the results from Panel A and Panel D, it becomes apparent that our method

produces more concise confidence intervals, between 17% to 92% shorter than those generated by

AM16 in the subperiods specifications. Another notable finding is that several effects, considered

statistically significant under AM16 without accounting for high-dimensional covariates, lose their

significance when employing DML method to handle the high-dimensional covariates in the proposed

method. In particular, the adoption of our proposed method leads to a loss of statistical significance

for three out of the seven coefficients. As mentioned in page 714 about the second-stage results in

Hornung (2015),

We find a significant increase in urban population growth due to railroad access of 2.1

percentage points (with a standard deviation of 0.6 percentage points) during the period

1849-1871. Across all subperiods under consideration, the effect varies between 1.1 and

2.2 percentage points for a city that gained access by 1848.

When comparing the results across Panel B, Panel C, and Panel D, it is crucial to underscore

that the confidence intervals derived from our proposed method exhibits notable reductions in length

(ranging from 49% to 66% shorter) compared to those significantly larger intervals obtained from

CCDDHNR18 and BCFH17, which lack robustness against weak identification.

To evaluate the impact of the number of folds on the results, Table 2 showcases the findings

obtained from our proposed method, varying the number of folds. We observe that the confidence

intervals remain consistent across Panel A and B, even with changes in the number of folds.

To robustly account for the weak identification issue in the high-dimensional context, we recom-

mend researcher employ our proposed high-dimensional QLR method.

5.2 The Boundary Effects on Rental Prices

In this subsection, we reexamine the IV estimation by Ambrus et al. (2020) concerning the long-term

consequences of the 1854 cholera outbreak on housing prices. The authors investigate the impacts of a

cholera epidemic in a neighbor of 19th-century London on property values in 1864, a decade following

the outbreak. Page 479 of Ambrus et al. (2020) presents the background information,

In August 1854, St. James experienced a sudden outbreak of cholera when one of the 13

shallow wells that serviced the parish, the Broad Street pump, became contaminated with
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cholera bacteria... [So] residents were unaware they should stop using the local water

source in order to avoid infection.... [Within] the Broad Street pump (BSP) catchment

area, an estimated 16 percent of residents had contracted the disease and approximately

8 percent died.

In this context, Yi represents the log rental price of house i in 1864. The variable Di is an indicator,

set to 1 if house i has at least one cholera death. Ambrus et al. (2020) use two instruments Zi; we

focus on their preferred instrument, which is an indicator for whether the property i falls inside the

Broad Street pump (BSP) catchment areas, which were the primary contaminated area during the

outbreak. The controls Xi comprise all house characteristic variables listed in Table 1 of Ambrus et al.

(2020), such as distance to the closest pump, distance to the fire station, distance to the urinal, sewer

access, among a total of 23 variables.

In this study, the “compliers” refer to (1) houses situated within the cholera-affected contaminated

areas AND witnessed at least one cholera-related death, and (2) houses outside these contaminated

zone AND did not experience any cholera fatalities. However, the latter category does not actually

exist in the study since the authors limit the sample to properties within a certain distance of the

BSP boundary.

Table B2 in Ambrus et al. (2020) presents IV estimates and confidence intervals of the effect of

cholera-related deaths on rental prices in 1864. Notably, the first-stage F-statistics in the IV estimation

are around 10, indicating weak identification according to the tF critical value function proposed by

Lee et al. (2022). In light of this observation, we proceed with a reanalysis by incorporating all house

characteristic variables listed in Table 1 in Ambrus et al. (2020). The dataset for our reanalysis

consists of N = 467 observations, with the dimensionality of the covariates dim(X) = 23. The original

second-stage result is shown in page 493 in Ambrus et al. (2020),

The IV results show that houses having at least one death report a 50 percent drop in

rental value by 1854.

Table 3 presents the confidence intervals, and their lengths for four methodologies: AM16, CCD-

DHNR18, BCFH17, and our proposed HD-QLR. Our approach consistently delivers the shortest

confidence interval. In contrast, the three other conventional methods yield relatively large confidence

intervals. Noteworthy is that results deemed significant under AM16 lose their significance when using
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AM16 CCDDHNR18 BCFH17 HD-QLR

CI [-2.160, [-1.132, [-1.291, [-1.080,

-0.670] 0.406] 0.576] 0.035

length of CI 1.490 1.538 1.866 1.115

Table 3: Displayed are CI and the length of CI for the coefficient of the cholera-related deaths using

four different approaches: AM16, CCDDHNR18, BCFH17, and the proposed HD-QLR. Estimation

and inference results in CCDDHNR18 and HD-QLR are based on 10 iterations of resampled cross

fitting with K = 4 folds for cross fitting.

machine-learning methods to handle the high-dimensional covariates in the three alternative methods.

Given these insights, we advocate for our proposed HD-QLR method in high-dimensional models,

especially when weak identification may be a concern.

6 Conclusion

In this paper, we address the challenge of weak identification within the LATE framework, especially

in the presence of high-dimensional covariates. Our primary contribution lies in the introduction of an

identification-robust inference method. This is paired with a user-friendly algorithm for inference and

confidence interval construction for the LATE estimate. We validate the uniformly correct asymptotic

size of our proposed method. Through simulation studies, our method exhibits superior size control

and power performance in the finite sample, compared to the conventional identification-robust test

and the conventional ML methods, particularly within a high-dimensional LATE framework with

weak identification. Furthermore, we apply the proposed method to revisit the study by Hornung

(2015) concerning the effect of railroad access on urban population growth. Our findings suggest our

confidence intervals are substantially shorter than those from other conventional approaches. Similarly,

when revisiting the study by Ambrus et al. (2020) on boundary effects on rental prices, we obtain

exactly the same results as previously reported. Overall, our approach provides robustness against

both weak identification and high dimensionality, underscoring its potential applicability for a wide

range of empirical studies.
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Appendix

A Useful Lemmas

For the convenience of readers, we provide the convergence rate for the nuisance parameter in the

Lasso logistic and Lasso OLS models in Lemma 2 and 3.

Lemma 2. (Convergence rate for Lasso with logistic model) Suppose that Assumption 4-7 hold. In

addition, suppose that the penalty choice λ1 = K1

√
N log(pN) and λ2 = K2

√
N log(pN) for K1,K2 >

0. Then with probability 1− o(1),

‖(β̂11, β̂12)− (β0
11, β

0
12)‖ ∨ ‖γ̂ − γ0‖ .

√
sN log(pN)

N
.

Lemma 3. (Convergence rate for Lasso with OLS) Suppose that Assumption 4-7 hold. Moreover,

suppose that the penalty choice λ3 = K3

√
N log(pN) for K3 > 0. Then with probability 1− o(1),

‖(β̂21, β̂22)− (β0
21, β

0
22)‖ .

√
sN log(pN)

N
.

B Proofs of the Main Results

B.1 Proof of Theorem 1

Proof. Without loss of generality, we define the size of each fold Ik as n = N/K. For notation

simplicity, we introduce the notation [r] = {1, · · · , r} for any r ∈ N. Let us break down the proof

into three steps. In Step 1, we demonstrate equation (3.10) and establish the asymptotic normality of

ĜN (θ) over P ∈ P0, that is, the asymptotic normality of (ĜN (θ1), · · · , ĜN (θL)) for any (θ1, · · · , θL) ∈

ΘI × · · · ×ΘI . In step 2, we establish the stochastic equicontinuity of ĜN over P ∈ P0. Considering

ΘI is a subset of the compact set Θ and the score ψ is continuous with respect to θ, we infer ΘI is

both bounded and closed, implying its compactness. Given that ΘI is a compact set, the proof of the

weak convergence result is done. In Step 3, we prove that Ω̂(θ1, θ2) serves as a uniformly consistent

estimator for the covariance function Ω(θ1, θ2) over P ∈ P0.

Step 1. In this step, we first establish equation (3.10). Becasue K is a fixed integer and independent
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of N , it suffices to show that over P ∈ P0, for any k ∈ [K],

En,k[ψ(W ; θ, η̂k)]− EP [ψ(W ; θ, η̂k)]− (En,k[ψ(Wi, θ, η0)]− EP [ψ(W ; θ, η0)]) = Op(N
−1/2r′N ). (B.1)

For notation simplicity, we define En,k[f(W )] = n−1
∑

i∈Ik f(Wi). In order to show this, let us fix

k ∈ [K] and introduce an empirical process notation over P ∈ P0,

Gn,k[φ(W )] =
1√
n

∑
i∈Ik

(φ(Wi)− EP [φ(W )]),

where φ is any PN -integrable function of W . Then by triangle inequality, we have

‖En,k[ψ(W ; θ, η̂k)]− EP [ψ(W ; θ, η̂k)]− (En,k[ψ(Wi, θ, η0)]− EP [ψ(W ; θ, η0)])‖ (B.2)

= n−1/2‖Gn,k[ψ(W ; θ, η̂k)]−Gn,k[ψ(W ; θ, η0)]‖ := n−1/2Ik3. (B.3)

Notice that, conditional on (Wi)i∈Ick , the estimator η̂k is non-stochastic. Then we have,

EP [I2
k3|(Wi)i∈Ick ] = EP

[
(ψ(W ; θ, η̂k)− ψ(W ; θ0, η0))2|(Wi)i∈Ick

]
≤ sup

η∈TN
EP
[
(ψ(W ; θ, η)− ψ(W ; θ0, η0))2|(Wi)i∈Ick

]
≤ sup

η∈TN
EP [(ψ(W ; θ, η)− ψ(W ; θ0, η0))2] ≤ (r′N )2.

This completes the proof of equation (3.10). Combining (3.10) with the Lindeberg-Feller central limit

theorem (CLT) and the Cramer-Wold device yields the asymptotic normality of ĜN (θ) for any P ∈ P0.

Step 2. In this step, we prove the stochastic equicontinuity of ĜN over P ∈ P0. The stochastic

equicontinuity of ĜN can be stated as, for any ε1 > 0, and any θ1, θ2 ∈ ΘI such that |θ1 − θ2| ≤ δ,

lim
δ→0

lim sup
N→∞

P
(
|ĜN (θ1)− ĜN (θ2)| > ε1

)
= 0. (B.4)

By Markov’s inequity, for any ε1 > 0,

P
(∣∣∣ĜN (θ1)− ĜN (θ2)

∣∣∣ > ε1

)
≤ 1

ε1
EP

[∣∣∣ĜN (θ1)− ĜN (θ2)
∣∣∣] .

Thus, it suffices to show that for each k ∈ [K].

lim
δ→0

lim
N→∞

sup
P∈P0

√
NEP [|En,k[(θ1 − θ2)ψa(W ; η̂k)]− EP [(θ1 − θ2)ψa(W ; η̂k)]|] = 0. (B.5)
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Note that

EP

[∣∣∣En,k[(θ1 − θ2)ψa(W ; η̂k)]− EP [(θ1 − θ2)ψa(W ; η̂k)]
∣∣∣2] ≤ n−1δ2EP

[
ψa(W ; η̂k)

2
]
≤ n−1δ2c2

1,

which implies the equation (B.5). Thus, we complete the proof of the asymptotic equicontinuity of

ĜN over P ∈ P0.

Step 3. In this step, we first show Ω̂(θ1, θ2) = Ω(θ1, θ2)+OP (ρN ), and then we show Ω̂ is a uniformly

consistent estimator for Ω over P ∈ P0. To prove the first part, it suffices to show that over P ∈ P0

and each k ∈ [K],

Ik = |En,k[ψ(W ; θ1, η̂k)ψ(W ; θ2, η̂k)]− EP [ψ(W ; θ1, η0)ψ(W ; θ2, η0)]| = Op(ρN ), and

I ′k = |En,k[ψ(W ; θ, η̂k)]− EP [ψ(W ; θ, η0)]| = Op(ρN ).

Note that by triangle inequality, we have Ik ≤ Ik1 + Ik2, and I ′k ≤ Ik4 + Ik5, where

Ik1 = |En,k[ψ(W ; θ1, η̂k)ψ(W ; θ2, η̂k)]− En,k[ψ(W ; θ1, η0)ψ(W ; θ2, η0)]| ,

Ik2 = |En,k[ψ(W ; θ1, η0)ψ(W ; θ2, η0)]− EP [ψ(W ; θ1, η0)ψ(W ; θ2, η0)]| ,

Ik4 = |En,k[ψ(W ; θ, η̂k)]− En,k[ψ(W ; θ, η0)]| , Ik5 = |En,k[ψ(W ; θ, η0)]− EP [ψ(W ; θ, η0)]| .

First, we bound Ik2 and Ik5. Note that for q ≥ 4, we have

EP [I2
k2] ≤ sup

P∈P0

n−1EP [ψ(W ; θ, η0)4] ≤ n−1c4
1,

EP [I2
k5] ≤ sup

P∈P0

n−1EP [ψ(W ; θ, η0)2] ≤ n−1c2
1,

where the last inequality follows from Assumption 2 (ii) and Jensen’s inequality. Next, we try to

bound Ik1.

Ik1 =

∣∣∣∣∣∣ 1n
∑
i∈Ik

[ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− ψ(Wi; θ1, η0)ψ(Wi; θ2, η0)]

∣∣∣∣∣∣
≤ 1

n

∑
i∈Ik

∣∣ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− ψ(Wi; θ1, η0)ψ(Wi; θ2, η0)
∣∣

≤ 2

n

∑
i∈Ik

sup
θ∈ΘI

sup
η∈TN

(
|ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)| × |ψ(Wi; θ, η)|

)
≤ 2

n

∑
i∈Ik

(
sup
θ∈ΘI

(ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0))2
)1/2

×
(

sup
θ∈ΘI

sup
η∈TN

2

n

∑
i∈Ik

ψ(Wi; θ, η)2
)1/2
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and the conditional expectation of the first term given (Wi)i∈Ick on the event that η̂k ∈ TN is equal to

sup
P∈P0

EP
[
‖ψ(W ; θ, η̂k)− ψ(W ; θ, η0)‖2|(Wi)i∈Ick

]
≤ sup

η∈TN ,P∈P0

EP
[
‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖2|(Wi)i∈Ick

]
= r′2N ,

Because the event that η̂k ∈ TN holds with probability 1 − ∆N = 1 − o(1), it follows that Ik1 =

OP (r′N ) = OP (δN ). Since Ik2 = OP (N−1/2) and δN ≥ N−1/2, we have Ik = Op(ρN ) with ρN . δN .

Then we try to bound Ik4.

Ik4 =

∣∣∣∣∣∣ 1n
∑
i∈Ik

[ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)]

∣∣∣∣∣∣ ≤ 1

n

∑
i∈Ik

|ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)|

≤ sup
θ∈ΘI

 1

n

∑
i∈Ik

‖ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)‖2
1/2

.

By using the similar argument that we use to bound Ik1, we obtain Ik4 = OP (r′N ). Therefore, we

have I ′k = OP (ρN ) with ρN . δN . This completes the proof of Ω̂(θ1, θ2) = Ω(θ1, θ2) + OP (ρN ). To

prove Ω̂ is a uniformly consistent estimator of Ω over P ∈ P0, we need to show that for any ε2 > 0,

and any θ1, θ2, θ
′
1, θ
′
2 ∈ ΘI such that |θ1 − θ′1| ≤ δ1 and |θ2 − θ′2| ≤ δ2, we have

lim
δ1,δ2→0

lim
N→∞

sup
P∈P0

P
(
|Ω̂(θ1, θ2)− Ω̂(θ′1, θ

′
2)| > ε2

)
= 0.

By Markov’s inequality, for any ε2 > 0,

P
(
|Ω̂(θ1, θ2)− Ω̂(θ′1, θ

′
2)| > ε2

)
≤ 1

ε2
EP

[∣∣∣Ω̂(θ1, θ2)− Ω̂(θ′1, θ
′
2)
∣∣∣] .

Thus, it suffices to show that pver P ∈ P0, for each k ∈ [K],

Ik6 := EP
[∣∣En,k[ψ(W ; θ1, η̂k)ψ(W ; θ2, η̂k)]− En,k[ψ(W ; θ′1, η̂k)ψ(W ; θ′2, η̂k)]

∣∣] = 0,

as n→∞, δ1, δ2 → 0. Note that

Ik6 ≤ sup
P∈P0

EP [En [|ψ(W ; θ1, η̂k)− ψ(W ; θ′1, η̂k)| · |ψ(W ; θ2, η̂k)|] + En [|ψ(W ; θ2, η̂k)− ψ(W ; θ′2, η̂k)| · |ψ(W ; θ′1, η̂k)|]]

= sup
P∈P0

EP [En [|ψa(W ; η̂k) · (θ1 − θ′1)| · |ψ(W ; θ2, η̂k)|]] + EP [En [|ψa(W ; η̂k) · (θ2 − θ′2)| · |ψ(W ; θ′1, η̂k)|]]

≤ sup
P∈P0

(EP

[
ψa(W ; η̂k)2 · (θ1 − θ′1)2

]
)1/2 ·

(
EP

[
ψ(W ; θ2, η̂k)2

])1/2
+ sup

P∈P0

(EP

[
ψa(W ; η̂k)2 · (θ2 − θ′2)2

]
)1/2 ·

(
EP

[
ψ(W ; θ′1, η̂k)2

])1/2
≤ δ1 sup

P∈P0

(EP

[
ψa(W ; η̂k)4

]
)1/4 ·

(
EP

[
ψ(W ; θ2, η̂k)4

])1/4
+ δ2 sup

P∈P0

(EP

[
ψa(W ; η̂k)4

]
)1/4 ·

(
EP

[
ψ(W ; θ′1, η̂k)4

])1/4
≤ (δ1 + δ2)c21,
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where the second inequality follows from Cauchy-Schwarz inequality, the third inequality follows from

Jensen’s inequality, and the last one is from Assumption 2 (ii). It is obvious that limδ1,δ2→0 Ik6 = 0.

Therefore, Ω̂ is a uniformly consistent estimator of Ω over P ∈ P0. This completes the whole proof of

Theorem 1.

B.2 Proof of Theorem 2

Proof. As long as we show Lemma 1 holds, the proof of Theorem 2 is done. Let us define TN as the

set of all η = (g,m, p) consisting of P -square-integrable function g,m and p such that

‖η − η0‖P,q ≤ c1, ‖η − η0‖P,2 ≤ δN .

We proceed in four steps.

Step 1. We first verify the Assumption 1 that the AR-type Neyman orthogonal LATE score in

(2.5) satisfies the moment condition (3.1) and the Neyman orthogonality condition (3.2). It can be

easily verified that moment condition is satisfied. The Gateaux derivative in the direction η − η0 =

(g − g0,m−m0, p− p0) is given by

∂ηEP [ψ(W ; θ0, η)]
∣∣∣
η=η0

(η − η0)

= EP

[(
1− Z

p0(X)

)
(g(1, X)− g0(1, X))

]
− EP

[(
1− 1− Z

1− p0(X)

)
(g(0, X)− g0(0, X))

]
− θ0EP

[(
1− Z

p0(X)

)
(m(1, X)−m0(1, X))

]
+ θ0EP

[(
1− 1− Z

1− p0(X)

)
(m(0, X)−m0(0, X))

]
+ EP

[(
θ0Z(D −m0(1, X))− Z(Y − g0(1, X))

p0(X)2
+
θ0(1− Z)(D −m0(0, X))− (1− Z)(Y − g0(0, X))

(1− p0(X))2

)
× (p(X)− p0(X))

]
= 0,

where the last equality follows from the law of iterated expectations and

EP [Z|X] = p0(X), EP [Z(Y − g0(1, X))|X,Z] = 0, EP [Z(D −m0(1, X))|X,Z] = 0, (B.6)

EP [1− Z|X] = 1− p0(X), EP [(1− Z)(Y − g0(0, X))|X,Z] = 0, EP [(1− Z)(D −m0(0, X))|X,Z] = 0.

Referring to the definitions of the AR-type score for the LATE in (2.5) and linear orthogonal score in
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(3.9), we have

ψb(W ; η) = g(1, X)− g(0, X) +
Z(Y − g(1, X))

p(X)
− (1− Z)(Y − g(0, X))

1− p(X)
,

ψa(W ; η) = −m(1, X) +m(0, X)− Z(D −m(1, X))

p(X)
+

(1− Z)(D −m(0, X))

1− p(X)
.

Then we have ψ(W ; θ, η) = ψb(W ; η) + θ × ψa(W ; η). Therefore, all the conditions in Assumption 1

hold.

Step 2. Next, let us verify Assumption 2 (iii). Note that

EP
[
ψ(W ; θ, η0)2

]
= EP

[
(g0(1, X)− g0(0, X)− θ(m0(1, X)−m0(0, X)))2 ]

+ EP

[(Z(Y − g0(1, X))

p0(X)
− (1− Z)(Y − g0(0, X))

1− p0(X)
− θ
(Z(D −m0(1, X))

p0(X)
− (1− Z)(D −m0(0, X))

1− p0(X)

))2]
≥ EP

[(Z(Y − g0(1, X))

p0(X)
− (1− Z)(Y − g0(0, X))

1− p0(X)

)2]
− θ2EP

[(Z(D −m0(1, X))

p0(X)
− (1− Z)(D −m0(0, X))

1− p0(X)

)2]
≥ EP

[
Z2(Y − g0(1, X))2

p0(X)2

]
+ EP

[
(1− Z)2(Y − g0(0, X))2

(1− p0(X))2

]
≥

EP
[
Z(Y − g0(1, X))2 + (1− Z)(Y − g0(0, X))2

]
(1− ε)2

=
EP [u2]

(1− ε)2
≥ c2

0

(1− ε)2
,

where the first equality holds since the interaction term equals to zero by the equations in (B.6), the

third inequality follows from the facts that ε ≤ p0(X) ≤ 1 − ε, and the last equality follows from

Assumption 3 (iv). Thus the Assumption 2 (iii) is satisfied.

Step 3. Next, we verify Assumption 2 (i). By Lemmas 2 and 3 invoked by Assumption 3-7, with

probability 1− o(1),

‖(β̂11, β̂12)− (β0
11, β

0
12)‖ ∨ ‖(β̂21, β̂22)− (β0

21, β
0
22)‖ ∨ ‖γ̂ − γ0‖ .

√
sN log(pN)

N
.

The proof of Lemmas 2 and 3 are given in Section B.4 and B.5. Thus Assumption 2 (i) is satisfied.
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Step 4. Next, let us verify the condition in Assumption 2 (ii). Note that

‖g0(D,X)‖P,q = (EP [|g0(D,X)|q])1/q

≥ (EP [|g0(1, X)|qP (D = 1|X) + |g0(0, X)|qP (D = 0|X)])1/q

≥ ε1/q(EP [|g0(1, X)|q] + EP [|g0(0, X)|q])1/q

≥ ε1/q(EP [|g0(1, X)|q] ∨ EP [|g0(0, X)|q])1/q

≥ ε1/q(‖g0(1, X)‖P,q ∨ ‖g0(0, X)‖P,q).

Since ‖g0(D,X)‖P,q ≤ ‖Y ‖P,q ≤ c1 by Assumption 3, we have

‖g0(1, X)‖P,q ≤ c1/ε
1/q, and‖g0(0, X)‖P,q ≤ c1/ε

1/q.

By using similar arguments, we obtain

‖g(1, X)− g0(1, X)‖P,q ≤ c1/ε
1/q, ‖g(0, X)− g0(0, X)‖P,q ≤ c1/ε

1/q, (B.7)

‖m0(1, X)‖P,q ≤ 1/ε1/q, ‖m0(0, X)‖P,q ≤ 1/ε1/q,

‖m(1, X)−m0(1, X)‖P,q ≤ c1/ε
1/q, ‖m(0, X)−m0(0, X)‖P,q ≤ c1/ε

1/q,

since ‖m0(D,X)‖P,q ≤ 1, ‖g(D,X) − g0(D,X)‖P,q ≤ c1, and ‖m(Z,X) − m0(Z,X)‖P,q ≤ c1. By

calculation, we obtain

‖ψa(W ; η)‖P,q ≤ (1 + ε−1)(‖m(1, X)‖P,q + ‖m(0, X)‖P,q) + 2/ε

≤ (1 + ε−1)(‖m(1, X)−m0(1, X)‖P,q + ‖m0(1, X)‖P,q + ‖m(0, X)−m0(0, X)‖P,q + ‖m0(0, X)‖P,q) + 2/ε

≤ (1 + ε−1)(2c1ε
−1/q + 2ε−1/q) + 2ε−1 := cε1,

‖ψb(W ; η)‖P,q ≤ (1 + ε−1)(‖g(1, X)‖P,q + ‖g(0, X)‖P,q) + 2‖Y ‖P,q/ε

≤ (1 + ε−1)(2c1ε
−1/q + 2ε−1/q) + 2c1ε

−1 := cε2,

where cε1 and cε2 are constants related with ε instead of N . Note that this completes the verification

of Assumption 2 (b) Therefore, under the null, we have

(EP [‖ψ(W ; θ, η)‖q])1/q = ‖ψ(W ; θ, η)‖P,q ≤ ‖ψ(W ; θ, η)− ψ(W ; θ0, η)‖P,q + ‖ψ(W ; θ0, η)‖P,q

≤ |θ − θ0| × ‖ψa(W ; η)‖P,q + ‖ψb(W ; η)‖P,q + |θ0| × ‖ψa(W ; η)‖P,q

≤ |θ − θ0|cε1 + cε2 + |θ0|cε1 . 1,
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where the last inequality need the assumption that Θ is a compact set by Assumption 3 (vi). This

completes the verification of Assumption 2 (ii) (a).

Next, let us verify the condition in Assumption 2 (ii) (c). For any η = (g,m, p), by the triangle

inequality,

(EP [‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖2])1/2 = ‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖P,2 ≤ I1 + I2 + I3 + I4,

where

I1 := ‖g(1, X)− g0(1, X)‖P,2 + ‖g(0, X)− g0(0, X)‖P,2,

I2 := |θ| × (‖m(1, X)−m0(1, X)‖P,2 + ‖m(0, X)−m0(0, X)‖P,2) ,

I3 :=

∥∥∥∥Z(Y − g(1, X))

p(X)
− Z(Y − g0(1, X))

p0(X)

∥∥∥∥
P,2

+

∥∥∥∥(1− Z)(Y − g(0, X))

1− p(X)
− (1− Z)(Y − g0(0, X))

1− p0(X)

∥∥∥∥
P,2

,

I4 := |θ| ×

(∥∥∥∥Z(D −m(1, X))

p(X)
− Z(D −m0(1, X))

p0(X)

∥∥∥∥
P,2

+

∥∥∥∥(1− Z)(D −m(0, X))

1− p(X)
− (1− Z)(D −m0(0, X))

1− p0(X)

∥∥∥∥
P,2

)
.

By using the similar argument as the one in obtaining equation (B.7), we have

‖g(1, X)− g0(1, X)‖P,2 ≤ δN/ε1/q, ‖g(0, X)− g0(0, X)‖P,2 ≤ δN/ε1/q,

‖m(1, X)−m0(1, X)‖P,2 ≤ δN/ε1/q, ‖m(0, X)−m0(0, X)‖P,2 ≤ δN/ε1/q.

so I1 ≤ 2δN/ε
1/q and I2 . 2δN/ε

1/q. To bound I3, we have

I3 ≤ ε−2 ×
(
‖Zp0(X)(Y − g(1, X))− Zp(X)(Y − g0(1, X))‖P,2

+ ‖(1− Z)(1− p0(X))(Y − g(0, X))− (1− Z)(1− p(X))(Y − g0(0, X))‖P,2
)

≤ ε−2 ×
(
‖p0(X)(u+ g0(1, X)− g(1, X))− p(X)u‖P,2

+ ‖(1− p0(X))(u+ g0(0, X)− g(0, X))− (1− p(X))u‖P,2
)

≤ ε−2 ×
(
‖p0(X)(g0(1, X)− g(1, X))‖P,2 + ‖(p(X)− p0(X))u‖P,2

+ ‖(1− p0(X))(g0(0, X)− g(0, X))‖+ ‖(p(X)− p0(X))u‖P,2
)

≤ ε−2 ×
(
‖(g0(1, X)− g(1, X))‖P,2 +

√
c1‖p(X)− p0(X)‖P,2

+ ‖(g0(0, X)− g(0, X))‖+
√
c1‖p(X)− p0(X)‖P,2

)
≤ ε−2 × (2/ε1/q + 2

√
c1)δN ≤ cε3δN ,
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where cε3 ≥ ε−2 × (2/ε1/q + 2
√
c1), the first inequality follows from ε ≤ p(X) ≤ 1 − ε and ε ≤

1 − p(X) ≤ 1 − ε, and the fourth one follows from Assumption 3 (vi). We use the similar argument

to bound I4 and obtain that I4 . δN . Therefore, we have ‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖P,2 . δN , which

completes the verification of Assumption 2 (ii).

B.3 Proof of Theorem 3

Proof. The proof relies on Theorem 1 in Andrews and Mikusheva (2016). As long as we show As-

sumption 1-4 in Andrews and Mikusheva (2016) hold, the proof of Theorem 3 is done. First, note

that Theorem 2 in our paper confirms that Assumption 1 and 3 in Andrews and Mikusheva (2016) are

satisfied. Next, we verify Assumption 2 in Andrews and Mikusheva (2016) that the variance Ω(·, ·) is

uniformly bounded and non-negative, satisifying 0 ≤ supP∈P0
supθ∈ΘI Ω(θ, θ) ≤ C, for a finite C > 0.

In our current LATE framework, where the score ψ(W ; θ, η0) is a scalar, the variance function simplifies

to Ω(θ, θ) = EP [(ψ(W ; θ, η0)−EP [ψ(W ; θ, η0)])2], inherently non-negative. Furthermore, Assumption

2(ii) ensures the uniform boundedness of Ω(θ, θ). Lastly, Assumption 4 is directly validated via Lemma

1 in Andrews and Mikusheva (2016). Consequently, we complete the proof of Theorem 3.

B.4 Proof of Lemma 2

Proof. We apply Lemma 1 in Belloni et al. (2016). First, note that Assumption 4 implies that the

restricted eigenvalue condition holds with probability 1− o(1) by Lemma 2.7 in Lecué and Mendelson

(2017): for T = supp(β0
11, β

0
12), |T | ≥ 1, and c ≥ 1, we have κc0 = infδ∈Dc0

‖(Zi,X′i)δ‖2,N
‖δT ‖1 > 0, where

Dc0 = {δ : ‖δT c‖ ≤ c0‖δT ‖1} with c0 = (c+ 1)/(c− 1).

Step 1. For a subset A ⊂ Rp+1, define the nonlinear impact coefficient by

q̄A = inf
δ∈A

EN
[
|(Zi, X ′i)δ|

2
]3/2

EN
[
|(Zi, X ′i)δ|

3
] .
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To apply Lemma 1 in Belloni et al. (2016), we verify the condition q̄Dc0 > 3
(
1 + 1

c

)
λ1
√
sN/ (Nκc0)

with probability 1 = o(1). Observe that

q̄Dc0 = inf
δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]3/2

EN
[
|(Zi, X ′i)δ|

3
] ≥ inf

δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]1/2

maxi∈[N ] ‖(Zi, X ′i)‖∞‖δ‖1
&P inf

δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]1/2

N1/qMN‖δ‖1

≥ inf
δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]1/2

N1/qMN (1 + c0)
√
sN‖δT ‖

≥ κc0
N1/qMN (1 + c0)

√
sN
≥ 1

∆
1/2
N N1/4

&

√
sN log aN

∆NN
,

where the fourth inequality follows from the definition of κc0 , and the fifth comes from ∆N ≥

MNsN/N
1/2−2/q and the last one from sN log aN/N

1/2 ≤ ∆N by Assumption 7(iii), ∆N = o(1),

and λ1 =
√
N log aN . Therefore, we obtain,

‖Zi(β̃11 − β0
11) +X ′i(β̃12 − β0

12)‖2,N = O(
λ1
√
sN

N
), ‖(β̃11, β̃12)− (β0

11, β
0
12)‖1 = O(

λ1sN
N

).

Step 2. In this step, we show for some large K > 0, let ζ ∈ (0, 1) and λ1 = K
√
N log(p/ζ), then

with probability 1− ζ − o(1), for a fixed c > 1, it holds that

P (λ1/N ≥ c‖∇L1(β0
11, β

0
12)‖∞) ≥ 1− ζ − o(1).

The proof relies on Theorem 2.1 and 2.2 in Chernozhukov et al. (2013). It is straightforward that

the conditions in Chernozhukov et al. (2013) are directly implied by Assumption 7 (i)(ii). Now, by

Theorem 2.1 and 2.2 in Chernozhukov et al. (2013), we have

sup
t∈R
|P (‖
√
N∇L1(β0

11, β
0
12)‖∞ ≤ t)− P (‖G‖∞ ≤ t)| = o(1),

where G ∼ N(0,Σ), Σ is the asymptotic variance of
√
N∇L1(β0

11, β
0
12). Then the Gaussian concen-

tration inequality implies that with probability 1− ζ − o(1),

P (λ1/N ≥ c‖∇L1(β0
11, β

0
12)‖∞) ≥ 1− ζ − o(1).

Now, combining the result with the bound from Step 1 concludes the convergence rate for (β̂11, β̂12).

Replacing λ1, (Zi, X
′
i), (β11, β12), L1(β11, β12) by λ2, X ′i, γ, L2(γ) respectively, we could obtain the

convergence rate for γ̂.
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B.5 Proof of Lemma 3

Proof. The proof relies on Theorem 1 in Belloni and Chernozhukov (2013). We need to verify the

conditions in Theorem 1 in Belloni and Chernozhukov (2013) hold. Note that Assumption 4 directly

implies the restricted eigenvalue condition in Belloni and Chernozhukov (2013). Condition V in Belloni

and Chernozhukov (2013) follows from Assumption 3 (iv) and (v). Therefore, with the choice of

λ3 = K3

√
N log(pN), we have with probability 1− o(1), ‖(β̂21, β̂22)− (β0

21, β
0
22)‖ .

√
sN log(pN)

N .
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