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Abstract

» For dyadic data, we develop a novel dyadic cross fitting
algorithm to remove over-fitting biases under arbitrary
dyadic dependence.

» Dyadic data, e.g.,

> free/preferential trade agreement,

» friendship, and

» financial relationships, etc.

» DML' = generic method of estimation & inference for
parametric, semi-parametric, high-dimensional models, etc.
based on machine learning (ML).

> We illustrate an application of the general framework to
high-dimensional network link formation models.

» We reconfirm that distance and the size of economics are
two important determinants of FTA.

1
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)



Dyadic Data
Consider the sample {W;; : 1 <i < N,1<j5 <N}

> Assume the sample contains IN nodes with no self link
i # j.

» Assume that

Wij A Wirj/
unless {z, 5} N{#', 5"} # 0.

-« Butif {4,5} {7, 3'} # 0, then we allow for
dependence.

> Notation:
NT2 .= {(i,§) € N*?: i # j}.

» An example: Free Trade Agreements



Free Trade Agreements (FTA)
Analyze the determinants of FTA,

» Consider the empirical model

Ep[Yi;|Dij, Xi;] = A(Dy;60 + X;;8) for (i,5) € [N]2.

» Pioneering analysis of economic factors of FTA by Baier
and Bergstrand (2004)

P> a greater distance between economics makes an FTA less
beneficial = the population-weighted bilateral distance
between i and j in kilometer.

» larger sizes of economics make an FTA more beneficial =
the sum of the logarithms of the per-capita GDP.

» more similar economic sizes make an FTA more beneficial
=> the absolute difference of the logarithms of the
per-capita GDP in baseline year.

» wider relative factor endowments make an FTA more
beneficial = the absolute difference of the logarithms of the
capital-labor ratios in baseline year.



Double/Debiased Machine Learning (DML)

» Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey, and Robins (CCDDHNR, 2018) provide a general
DML toolbox of estimation & inference for parametric,
semi-parametric, high-dimensional models, etc:

DML =~ Neyman Orthogonal Score 4 Cross-Fitting.

» The former mitigates the slow convergence rates of
ML-based estimates of nuisance parameters.

» The latter removes the error induced by overfitting.

» ii.d. sampling is crucial for cross-fitting.

» Our dyadic sampling # i.i.d.



Objective of the Paper

> We propose a novel dyadic cross-fitting algorithm and
theories for estimation and inference using machine
learning of nuisance parameters when data are dyadic.

» This objective is motivated by:

» empirical applications that use dyadic data are lacking
theoretical support (determinants of FTA).

> recently growing interest in use of double/debiased machine
learning methods of estimation and inference for
high-dimensional models in today’s big data environments.



Relations to the Literature

» Dyadic cluster robust variance formulas:

» Fafchamps and Gubert (2007) propose dyadic cluster robust
variance estimators for the OLS and logit.

» Cameron and Miller (2014) generalize the dyadic cluster
robust variance estimator for GMM and M-estimation.

» Asymptotic behavior:

» Davezies, D’Haultfoeuille, and Guyonvarch (2019) study the
asymptotic behavior of empirical process and their
bootstrap counterparts of dyadic data.

» Chiang, Kato and Sasaki (2020) develop methods of
inference for high-dimensional parameters.

» Determinants of FTAs:

> Baier and Bergstrand (2004) identify a parsimonious set of
key economic determinants for the formation of free trade
agreements: trade costs, the market size of the free trade
zone, and the similarity of trading partners in terms of
economic development and/or factor-endowments.
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Setup

Assume

Ep[y(Wij;00,1m0)] = 0.
The nuisance parameter 7 may be finite-, high-, or
infinite-dimensional. Its true value is denoted by ng € T
Object of interest: the true value 89 € O of 6.
Consider a linear score
P(w; 0,n) = P (w;n)0 4 ¢°(w;n)
with

» low-dimensional parameter vector 8 € @ C R%.

» nuisance parameter n € T for a convex set T'.



Neyman Orthogonality Condition

Path-wise derivative map D,

D.[n —mno] := 8, {Ep [(W;00,1m0 +7(n —m0)]} MmET

Notation of D,.[n — ng] evaluated at r = 0:

OnEp [ (W3500,m0)] [N — n0] := Do [n — no] neT

The Neyman orthogonality condition holds at (89, n0)
with respect to a nuisance realization set T, C T if

OnEpyp(W;00,m0)[n — m0] = 0
holds for all n € T,.

Can be generalized to near orthogonality.



Review of DML (CCDDHNR) under i.i.d Sampling

» Randomly partition {1, ..., N} into K parts {I1,..., Ik }.
» For each k € {1,..., K}, obtain an estimate

e = 0 (Wa)ieqa,....N)\I,,)

of the nuisance parameter n by some machine learner using only
the subsample with ¢ € {1,..., N} \ I.

> Define 6, the double/debiased machine learning (DML)
estimator for @g, as the solution to

1 & -
E Z ]En,k[w(W; 09 'rlk)] = 07
k=1

where En k[f(W)] = 7 X;cr, £(Wi) denotes the subsample
empirical mean using only data with ¢ € Ij.



DML (CCDDHNR) under i.i.d Sampling, Continued

Figure: An illustration of 2-fold cross-fitting.

Score Nuisance Nuisance Score

En,1 [t (W53 6, 71)] En,2[t)(W; 6, 72)]
i
The DML estimator 6 is obtained by solving

En1[$(W;0,01)] + En2[$(W;8,72)] = 0

» If i.i.d. is violated (as in dyadic sampling), then blue and
red subsamples are no longer independent.



Dyadic Cross Fitting

> Notations:
> [r] :={1,...,7} for any r € N.
» For any finite set I with I C [N], |I| denote the
cardinality of I, and I¢ denote the complement of I.
> N+2 = {(4,5) € N*t2: 4 # j} denote the set of two-tuple
of Nt without repetition.




Dyadic Cross Fitting

» Randomly partition [IN] into K parts {I1,...,Ix} .

» For each k € [K], obtain an estimate

e = 3 (Was) peinir?)

of the nuisance parameter 1 by some machine learner using only the
subsample with (2,7) € ([IN]\ Ix)2.

» Define 5, the dyadic machine learning estimator for @, as the solution

to
1 =
% 2 Enalb(W;6,m)] = o,
kE[K]
where Bz, |[f(W)] = m Z(i,j)eg f(W3;) denotes the

subsample empirical mean using only data with (¢,5) € IT?



2-Fold Cross-Fitting under Dyadic Sampling

L .
Score !
i,j€{1,2,3,4} --------- .i.-.-, .....
Score _________' _________
I :
: ' I
. Nuisance
__________E _________ Nuisance
E I

E g, [¥(W; 0, 71)]

i,j € {5,6,7,8}



2-Fold Cross-Fitting under Dyadic Sampling

I3
Nuisance |  : . |
i,j€{1,2,3,4} --------- e R
cevcel .
I '
: .
' , ' ' Score
i,j € {5,6,7,8}
I_____I_____E____i____ Score
5 h

IE|I2| [p(W; 57 ﬁZ)]



Dyadic Cross Fitting

> We call this procedure K-fold dyadic cross-fitting.
» For each k € [K],

» The nuisance parameter 7 is computed using the
subsample with (,7) € ([N]\ Ix)?.

» The score E|r,|[¥(W3 -, +)] is computed using the
subsample with (¢,7) € IZ.

» This two-step computation is repeated K times for every
partitioning pair k € [K].



Inference

» We propose to estimate the asymptotic variance of v IV (5 — 6p)
by 62 = JT'(J~1)’, where

1 .
e D> B [ (Wi k)],
kE[K]
1 [Ig| — 1 ~ ~
% > W[Z D> Y(Wijs 0, k) (Wijr3 0, i)’
ke[k] \TRIMTk i€l j,5' €1y,
33’ #i
+ 30> w(Wiys 0, tk)p(Wirys 0, 1ik)’
J€IK 3,3 €1},
i,/ #j
+ > > »(Wijs 0, i)Y (Wjiri3 0, i)’
1€l §,j' €Iy,
4.3’ #i
+ > > ¢(Wij;g,ﬁk)¢(Wji';5’ﬁk)/]-
J€IL 3,3 €1}
i,/ #j

J

=D
I

> For a dg-dimensional vector r, the (1 — a) confidence interval
for the linear functional 7’8y can be constructed by

Cl, := [r'6 + ®~'(1 — a/2)\/r'a2r/N].



Table of Contents

Theory



Notations

» Let cg > 0,c1 > 0,s >0, g > 4 be finite constants with
Co S Cy.

» Let {0n}n>1 (estimation errors), {An}n>1 (probability
bounds) and {7n}n>1 be sequences of positive constants
that converge to zero such that 6y > N—1/2,

> Let K > 2 be a fixed integer.



Assumption Summary

» Linear Score
» Sampling
» Linear Neyman Orthogonal Score

» Score Regularity and Nuisance Parameter Estimators

» Nonlinear and Nonseparable Score

> Sampling

» Nonlinear Moment Condition Problem with Approximate
Neyman Orthogonality

» Score Regularity and Nuisance Parameter Estimators



Assumption: Dyadic Sampling
Suppose N — oo. The following conditions hold.

(i) (Wij)(i,j) <z is an infinite sequence of jointly
exchangeable p-dimensional random vectors. That is, for
any permutation 7w of IN, we have

d
Wij) i jyexz = Wa(iym()) (i, exz

(ii) (Wij)(i jyenz is dissociated. That is, for any disjoint
subsets A, B of NT, with min(|A[, |B]|) > 2,
(Wij)(i,j)eﬁ is independent of (Wij)(i,j)eﬁ'



Aldous-Hoover-Kallenberg representation

» Assumption 1 (i) & (ii) together imply the
Aldous-Hoover-Kallenberg representation (e.g. Kallenberg,
2006; Corollary 7.35), which states that there exists an
unknown (to the researcher) Borel measurable function 7,
such that

d
Wij = ma(Us, Uj, Uy 431,

where {U;, Uy; 4y ¢ 4,5 € [N], 2 # j} are some i.i.d.
latent shocks that can be taken to be Unif[0, 1] without
loss of generality — see Aldous (1981).

> We can exploit the independence over them.



Assumption: Linear Neyman Orthogonal Score

For N > 4 and P € Py, the following conditions hold.

(i) The map n +— Ep[p(W12;60,n)] is twice continuously Gateaux
differentiable on T'.

(ii) 1) satisfies either the Neyman orthogonality condition or the
Neyman near orthogonality condition.

(iii) The identification condition holds; namely, the singular values of
the matrix Jo := Ep[1®(W12;10)] are between ¢ and ¢;.



Assumption: Score Regularity and Nuisance Parameter Estimators

For all N > 4 and P € Pn, the following conditions hold.

(i) Given random subsets I C [IN] such that |I| = |N/K |, the nuisance
parameter estimator 7 = n((W”)(l J)E([N]\I)z) belongs to Tnv with
probability 1 — A, where Tn contains 7g.

(ii) All eigenvalues of the matrix

T = Ep[(Wi2; 00, 10)%¥(Wis; 00, 10)] + Ep[(Wiz2; 00, 10)1(W31; 00, 10)]
+ Ep[(W21; 60, 10)(Wis; 0o, m0)] + Ep[tp(W21; 60, 10)(W3a1; 0o, n0)]

are bounded from below by co.



Main Result

Suppose that the above assumptions are satisfied. If
dn > N=1/2 for all N > 4, then

VNo™1(6 - 60) = g > Ein #(Wij) + Opy (pn) ~ N(0, Ia,)
ke[K]

holds uniformly over P € Pp, where the size of the remainder
terms follows

pn = N2 4oy 4+ (NV2AN) +NY2X < 6N,
———

Neyman Near
Orthogonal

the influence function takes the form
P(-) = —0'_1J0_1'¢(~; 00, M0), and the approximate variance
is given by

o? = Jy (It



Variance Estimation

Under the same set of assumptions as above,
o2 =0%+ Op(pn).

Furthermore, the statement of the theorem in the previous slide
holds true with &2 in place of 2.



Assumption: Nonlinear and Nonseparable Scores

For N > 4 and P € Pn, the following conditions hold.
(i) © contains a ball of radius ¢; N~'/2log N centred at 6.

(ii) b satisfies either the Neyman orthogonality condition or the
Neyman near orthogonality condition.

(iii) For all 8 € O, the identification relation
2||Ep[¢(Wi2;0,m0)]l| = |[Jo(6 — B0)|| A co
is satisfied with the Jacobian matrix
Jo := ¢ {Ep[¥(W;0,m0)]}e=6,

having singular values between ¢ and c;.



Assumption: Score Regularity and Nuisance Parameter Estimators

For all N > 4 and P € Pn, the following conditions hold.

(i) The function class
F1={v;(:6,n) :j=1,...,do,0 € O,n € Tn} is suitably
measurable and its uniform entropy numbers satisfy

suplog N(F1, || - lg.2,¢l| Fillg.2) < vn log(an/e), for all 0 < e <1,
Q

where Fj is a measurable envelope for 7 that satisfies
| F1]lpq < Kn.

(ii) All eigenvalues of the matrix

T' = Ep[(W12;00,10)(W1s; 00, m0)] + Ep[¢)(Wi2; 80, 10)%(W31; 60, 10)]
+ Ep[¢(W21; 60, 10)¥(W1i3;00,m0)] + Ep[tp(W21;600,mn0)1 (W3a1; 6o, 10)]

are bounded from below by co.



Main Result

Suppose that the above assumptions are satisfied. If
5},;, > N-1/2+1/a1og N and N—1/21og N < 7n < 6 for all v > 4,
then

N ~ _
VNo=(0 — 60) = % > Ein % (Wij) + Opy (pN) ~ N(0,14,)
ke[K]

holds uniformly over P € Py, where the size of the remainder
terms follows

PN = N~—1/2+1/q + N logl/z(l/rg\]) + N1/2>\N + N1/2)\§V <N,

the influence function takes the form () := —o=2J5 (-5 00, m0),
and the approximate variance is given by

o? = Jy (I3t .



Variance Estimation

Under the same set of assumptions as above,
o’ =0+ Op(pn),

for 2 = J-T'(J)~1, where

kc[K


Yukun Ma


Our Approach to the Variance Formula

» The Aldous-Hoover-Kallenberg representation

Under our sampling assumption, there exists a measurable function
Tr such that

Wij = Tn(U—i, Uj,U{i,j}) a.s.,

where U’s are independent uniform [0, 1] random variables.

» The Héjek projection of G, f = % Z(i,j)eW F(W35)
on functions of each single (U;)j=; can be written as

Hnf = % Zze[n]{zj;ﬂ Ep[f(Wy)|Ui] + Zi;&[ Ep[f(Wa)|Uil}-
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High-dimensional Logit Dyadic Link Formation Models

» Logit model
Ep(Yi;|Dij, Xi;] = A(Di;00 + Xi;80) for (i,5) € [N]?

where A(t) = lj_%g()t) for all t € R.

» The goal is to construct a generated random variable
Z;; = Z(D;j, X;j) such that

Ep [{Yi; — A (Di;j00 + X{;80)} Zi;] = 0,

Lo ’

a0 Er [{Yis — A (Dij6 + Xi;B0) } Zis] # 0,
6=0¢

o ’

apEr [1Yis — A (Digbo + X3;8) } Zis] =0.
B=Po




High-dimensional Logit Dyadic Link Formation Models

» Consider the weighted regression of D;; on X;;: (Belloni,
Chernozhukov, Wei (2016) )

fiiDij = fi; Xijv0 + Viz,  with  Ep [fi;Vi; Xi5] = 0,
where
fij := wij/oij, o3 = Var (Yi;|Dij, Xij)
wij = AM (Dy;00 + X/;80), and AV (t) = %A(t).
» The optimal generated random variable is given by
Zij := Vij/oij.
» Under the logit link A, fij, afj, w;; and Z;; are given by
fii = wij,
o} = wij = A (Di;00 + Xi;80) {1 — A (Di;600 + Xi;B0)}, and
Zijo = Dij — Xij7o-
» The Neyman orthogonal score
Y (Wij30,m) = {Yi; — A(Di;0 + Xi;8)}(Dij — Xiz7),

where 7 = (3’,~’)’ denotes the nuisance parameters.



Algorithm

» Randomly partition [IN] into K parts {I1,..., Ik }.

» For each k € [K]: obtain an post-lasso logistic estimate (§k, ,5k) of
the nuisance parameter by using only the subsample of those
observations with dyadic indices (2, 7) in ([IN] \ Ix)?,

A1
= 0’ 1
E (0]

(6, Br) € arg min By rg| [L(Wig3 6, 8)] : supp(6, 8) C supp (Ox, Br)-

(0k, Br) € arg IgiBnEu,g [L(W;;50,8)] +

» For each k € [K]: calculate the weight
P2 = A (Disbi + X080 ) {1 — A (Disbi + X180 ) } where
(3,3) € (IN]\ Ix)*.



Algorithm, Continued

» For each k € [K]: obtain an post-lasso OLS estimate 4 of the
nuisance parameter by using only the subsample of those observations
with dyadic indices (¢, 3) in ([IN] \ Ix)?,

~ . 2 2
Y& € arg IlgnE|Ig| [fij,k (Dij — Xi5) ] |IC| Il

Fr € arg H}finEuﬂ [fzzgk (Dij — X1{.j'7)2:| :  supp(y) C supp(Jx)-
> Solve the equation & > ke Bizg [ (W5 6, 1m,)] = 0 for 6 to obtain

the dyadic machine learning estimate 8, with 7x = (84, 7%)’ and
(i,9) € I}.



Algorithm, Continued

» Let the dyadic Lasso DML asymtotic variance estimator be given by
6% = J'T'(J~') where

- 1 - ~ - ~ ~
T=—0 > En ADi6 + Xi;Pk){1 — A(Ds;36 + Xi;Pk)H(Dij — Xij7k) D
kE[K]
-1 I — 1 o o
r= = W[ S (Wi 6, i) (W05 6, k)’
kE[K] (T kI — ie[lcj,j/EIk
4,37 #i
+ 3 Y v(Wis 0, )W 56, 06) + D D (Wi 6, fik)w (W5 6, k)’
€Ik i,4' €Ty, €Ik §,5' €1y,
1,4 #j 3,3" #i

3 (Wi 6, ) e (Wy05 6, k)]
J€IK i,i' €1y,
il A

> Report the estimate 8, its standard error /&2 /N, and/or the
(1 — a) confidence interval

Cla := [ &+ & (1 — a/2)/32/N].
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DGP

For each (Z,7) € W, generate the random vector
(Dija Xz{j, Eij), according to

1 1~ -
1> 15 1
X’ij = §Xz + ng + §Xij’

€ij = FLo;istic(O,l) 9 FNormal(O,l) (\/;E,L + \/;EJ —+ \/;670) ,

Construct Y;; = 1{D;;600 + Xz{jﬁo > e}



Monte Carlo Simulation

Table: Simulation results based on 2,500 Monte Carlo iterations

Method N dim(X) K True Mean Bias SD RMSE Q25 Q50 Q75 90% 95%
Conventional ML 50 25 5 1000 1.144 0.144 0316 0.347 0.928 1.139 1.354 0.363 0.422
Conventional ML 100 50 5 1000 1.148 0.148 0.220 0.265 0.999 1.141 1.293 0.233 0.277
Conventional ML 50 25 10 1.000 1.145 0.145 0.316 0.348 0.929 1.139 1.356 0.360 0.421
Conventional ML 100 50 10 1.000 1.149 0.149 0220 0.265 0.998 1.143 1.294 0.234 0.274
Conventional ML 50 50 5 1000 1253 0.253 0.316 0.405 1.044 1.253 1.464 0.332 0.392
Conventional ML 100 100 5 1000 1252 0.252 0222 0.336 1.100 1.248 1.404 0.170 0.209
Conventional ML 50 50 10 1.000 1.256 0.256 0.316 0.407 1.044 1.257 1.465 0.324 0.383
Conventional ML 100 100 10 1.000 1.254 0.254 0.222 0.338 1.102 1.249 1.406 0.171 0.206

Method N dim(X) K True Mean Bias SD RMSE Q25 Q50 Q75 90% 95%

Dyadic ML 50 25 5 1000 1.059 0.059 0470 0.474 0.746 1.052 1.369 0.908 0.950
Dyadic ML 100 50 5 1000 1.045 0.045 0283 0.292 0.848 1.040 1.236 0.901 0.946
Dyadic ML 50 25 10 1.000 1.047 0.047 0.518 0.520 0.688 1.034 1.394 0.922 0.965
Dyadic ML 100 50 10 1.000 1.039 0.039 0.303 0.305 0.825 1.042 1.239 0.916 0.957
Dyadic ML 50 50 5 1000 1.113 0.113 0.522 0.534 0.736 1.111 1.460 0.897 0.953
Dyadic ML 100 100 5 1000 1.105 0.105 0.304 0.322 0.903 1.105 1.314 0.883 0.940
Dyadic ML 50 50 10 1.000 1.114 0.114 0.582 0.593 0.715 1.101 1.497 0.908 0.964
Dyadic ML 100 100 10 1.000 1.095 0.095 0.320 0.334 0.880 1.093 1.316 0.908 0.958
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Empirical Application: Determinants of FTA

Table: Estimation and inference
based on 50 iterations of resampled cross fitting

Dependent variable: Logit Full Logit Conventional ML Dyadic ML
free trade agreement @ (I1) (111) (Iv) V) (VI)
(A) Distance -1.690 -1.358 -1.662  -1.660 -1.515  -1.762
(0.046) (0.075) (0.081) (0.079) (0.111) (0.115)
(B) Size (Sum of log GDP) 0.236 0.343 0.359 0.360 0.263  0.244
(0.013) (0.020) (0.008)  (0.007) (0.043) (0.035)
(C) Similarity (A log GDP) -0.003 -0.004 -0.004  -0.004 -0.001  0.001
(0.015) (0.018) (0.014) (0.014) (0.002) (0.002)
(D) Rel. Factor Endowments 0.231 0.187 -0.460  -0.460 -0.432  -0.396
(A'log K/L) (0.060) (0.072) (0.143)  (0.143) (0.326) (0.362)
Effective sample size 13,027 13,027 13,027 13,027 229 229
Dimension dim(D’, X')’ 5 141 141 141 141 141
Number K of folds N/A N/A 5 10 5 10




Table of Contents

Conclusions



Conclusions

For dyadic data, we develop a novel cross fitting algorithm
to remove over-fitting biases under arbitrary dyadic
dependence.

This novel dyadic cross fitting method enables v IN
consistent estimation and inference robustly against dyadic
dependence.

We illustrate an application of the general framework to
high-dimension network link formation models.

We confirm that trade costs and market size are key
determinants of FTA formation.



Thank you!
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